4 resultados para Micropropagation
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Micropropagation is unequalled for the rapid clonal propagation of improved cultivars from several Australian breeding programmes. This has been particularly true of the pineapple breeding programme, but it has also found an important role in the strawberry breeding programme where high-health mother stock is of paramount concern. In the banana and ginger industries, while access to new cultivars has been of importance, micropropagation has been adopted by the industry to ensure that planting materials are free from serious pests and diseases. Bananas can be used as planting material as early as the first generation ex vitro and is responsible for the establishment of laboratories and nurseries specializing in the production of pathogen-tested plants. The ginger industry, on the other hand, has used micropropagated plants as a source of disease and pest-free stock to establish a clean 'seed' scheme based on the production of conventional planting material.
Resumo:
The dwarf somaclonal variant is a major problem affecting micropropagation of the banana cultivar Williams (Musa spp. AAA; subgroup Cavendish). This problem arises from genetic changes that occur during the tissue culture process. Early identification of this problem is difficult and propagators must wait until plants are ex vitro in order to visualise the dwarfism phenotype. In this study, we have improved a SCAR-based molecular diagnostic technique, developed by Damasco et al. [Acta Hortic. 461 (1997) 157], for the early identification of dwarf off-types. We have included a positive internal control in a multiplex PCR and adapted the technique for use with small amounts of fresh in vitro leaf material as PCR template. The control product is a 500 bp fragment from 18S rRNA and is amplified in all tissues irrespective of phenotype. The use of small in vitro leaf material removing the need for genomic DNA extraction.
Resumo:
The Australian African mahogany estate comprises over 12,000 ha of industrial plantations, farm-forestry plots and trials, virtually all derived from Africa-sourced wild seed. However, the better trees have given high-value products such as veneers, high-grade boards and award-winning furniture. Collaborative conservation and improvement by the Northern Territory (NT) and Queensland governments since 2000 realised seed orchards, hedge gardens and genetic tests revealing promising clones and families. Private sector R&D since the mid 2000s includes silvicultural-management and wood studies, participatory testing of government material and establishing over 90 African provenances and many single-tree seedlots in multisite provenance and family trials. Recent, mainly public sector research included a 5-agency project of 2009-12 resulting in advanced propagation technologies and greater knowledge of biology, wood properties and processing. Operational priority in the short term should focus on developing seed production areas and ‘rolling front’ clonal seed orchards. R&D priorities should include: developing and implementing a collaborative improvement strategy based on pooled resources; developing non-destructive evaluation of select-tree wood properties, micropropagation (including field testing of material from this source) to ‘industry ready’ and a select-tree index; optimising seed production in orchards; advancing controlled pollination techniques; and maximising benefits from the progeny, clone and provenance trials. Australia leads the world in improvement and ex situ conservation of African mahogany based on the governments’ 13-year program and more recent industry inputs such that accumulated genetic resources total over 120 provenances and many families from 15 of the 19 African countries of its range. Having built valuable genetic resources, expertise, technologies and knowledge, the species is almost ‘industry ready’. The industry will benefit if it exploits the comparative advantage these assets provide. However the status of much of the diverse germplasm introduced since the mid 2000s is uncertain due to changes in ownership. Further, recent reductions of government investment in forestry R&D will be detrimental unless the industry fills the funding gaps. Expansion and sustainability of the embryonic industry must capitalise on past and current R&D, while initiating and sustaining critical new work through all-stakeholder collaboration.
Resumo:
This chapter discusses the botany and history, importance, breeding and genetics, molecular genetics, micropropagation (to control viruses), somatic cell genetics, genetic manipulation and cryopreservation of banana and plantain.