7 resultados para Methicillin-resistant Staphylococcus Aureus
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The aim of this investigation was to determine the persistence of biofilm-associated antibiotic resistance developed by methicillin-sensitive Staphylococcus aureus (MSSA), of different capsular types, during biofilm formation. Because of superiority of the tissue culture plate (TCP) over the Congo Red Agar (CRA) method for measuring biofilm formation, it was used to determine the persistence of the antibiotic resistance developed by the isolates in biofilms. The antibiotic resistance was found to persist for 3-4 wk post-propagation as planktonic subcultures. Interestingly, some strains even developed resistance to vancomycin and/or teicoplanin. However, no association of either biofilm formation or persistent antibiotic resistance with the major capsular phenotype was observed. These observations highlight the potential significance of (a) determining the antibiograms of S. aureus subcultured from biofilms developed in vitro using the TCP method as well as from planktonic cultures for formulation of an optimal therapeutic strategy, and (b) continuing to identify predominant non-capsular antigens contributing to biofilm formation, regardless of the capsular phenotype for the development of an effective potentially broad-spectrum vaccine for prevention of bovine mastitis caused by S. aureus.
Resumo:
Sago starch is an important dietary carbohydrate in lowland Papua New Guinea (PNG). An investigation was conducted to determine whether microbes play a role in its preservation using traditional methods. In 12 stored sago samples collected from PNG villages, lactic acid bacteria (LAB) were present (>= 3.6 x 10(4) cfu/g) and pH ranged from 6.8 to 4.2. Acetic and propionic acids were detected in all samples, while butyric, lactic and valeric acids were present in six or more. In freshly prepared sago, held in sealed containers in the laboratory at 30 degrees C, spontaneous fermentation by endogenous microflora of sago starch was observed. This was evident by increasing concentrations of acetic, butyric and lactic acids over 4 weeks, and pH reducing from 4.9 to 3.1: both LAB and yeasts were involved. Survival of potential bacterial pathogens was monitored by seeding sago starch with similar to 10(4)/g of selected organisms. Numbers of Bacillus cereus, Listeria monocytogenes and Staphylococcus aureus fell to <30/g within 7 days. Salmonella sp. was present only in low numbers after 7 days (<36/g), but Escherichia coli was still detectable after three weeks (>10(2)/g). Fermentation appeared to increase the storability and safety of the product.
Resumo:
A microplate assay was modified for the detection of antimicrobial activity in plant extracts. The aim was to develop an in vitro assay that could rapidly screen plant extracts to provide quantitative data on inhibition of microbial growth. A spectrophotometric assay using a microplate with serial dilutions of the plant extract and the bacteria was developed. Two bacteria, Staphylococcus aureus and Escherichia coli, were used for this study. Essential oils, oregano (Origanum vulgare) and lemon myrtle (Backhousia citriodora), and three active components carvacrol, thymol and citral were evaluated. The reproducibility of the assay was high, with correlation coefficients (r aureus and E. coli between 0.9321 and 0.9816. Similarly, r and 0.9814. This assay could also be used to measure antimicrobial activity in plant extracts which vary in pH and color.
Resumo:
Mastitis is one of the most economically significant diseases for the dairy industry for backyard farmers in developing countries and high producing herds worldwide. Two of the major factors impeding reduction in the incidence of this disease is [a] the lack of availability of an effective vaccine capable of protecting against multiple etiological agents and [b] propensity of some of the etiological agents to develop persistent antibiotic resistance in biofilms. This is further complicated by the continuing revolving shift in the predominant etiological agents of mastitis, depending upon a multitude of factors such as variability in hygienic practices on farms, easy access leading to overuse of appropriate or inappropriate antibiotics at suboptimal concentrations, particularly in developing countries, and lack of compliance with the recommended treatment schedules. Regardless, Staphylococcus aureus and Streptococcus uberis followed by Escherichia coli, Streptococcus agalactiae has become the predominant etiological agents of bovine mastitis followed Streptococcus agalactiae, Streptococcus dysagalactiae, Klebsiella pneumonia and the newly emerging Mycoplasma bovis. Current approaches being pursued to reduce the negative economic impact of this disease are through early diagnosis of infection, immediate treatment with an antibiotic found to either inhibit or kill the pathogen(s) in vitro using planktonic cultures and the use of the currently marketed vaccines regardless of their demonstrated effectiveness. Given the limitations of breeding programs, including genetic selection to improve resistance against infectious diseases including mastitis, it is imperative to have the availability of an effective broad-spectrum, preferably cross-protective, vaccine capable of protecting against bovine mastitis for reduction in the incidence of bovine mastitis, as well as interrupting the potential cross-species transmission to humans. This overview highlights the major etiological agents, factors affecting susceptibility to mastitis, and the current status of antibiotic-based therapies and prototype vaccine candidates or commercially available vaccines against bovine mastitis as potential preventative strategies. © 2013 Tiwari JG, et al.
Resumo:
The antibacterial activity and total phenolic (TP) content of Agaricus bisporus stipes were assessed using solvent and water extracts to determine its bioactivity. Extraction methods included accelerated solvent extraction (ASE) and hot water followed by membrane concentration. Water extract from ASE had the highest TP of 1.08 gallic acid equivalents (GAE)/g dry weight (DW) followed by ethanol at 0.61 mg GAE/g DW and 0.11 mg GAE/g DW for acetone. Acetone extracts inhibited Escherichia coli and Staphylococcus aureus at less than 50%; ethanol inhibited E. coli at 61.9% and S. aureus at 56.6%; and ASE water inhibited E. coli at 78.6% and S. aureus at 65.4%. The TP content of membrane concentrated extract of mushroom was 17 mg GAE in 100 mL. Membrane concentrated water extracts had a higher percentage inhibition on S. aureus than E. coli. Overall, the results were promising for further application of mushroom stipe extracts as a functional food additive. Practical Applications Mushrooms are known for their health benefits and have been identified as a good source of nutrients. The highly perishable nature of mushrooms warrants further processing and preservation to minimize losses along the supply chain. This study explores the possibility of adding value to mushroom stipes, a by-product of the fresh mushroom industry. The extracts assessed indicate the antibacterial activity and phenolic content, and the potential of using these extracts as functional ingredients in the food industry. This study provides valuable information to the scientific community and to the industries developing novel ingredients to meet the market demand for natural food additives.
Resumo:
The antibacterial activity and total phenolic (TP) content of Agaricus bisporus stipes were assessed using solvent and water extracts to determine its bioactivity. Extraction methods included accelerated solvent extraction (ASE) and hot water followed by membrane concentration. Water extract from ASE had the highest TP of 1.08 gallic acid equivalents (GAE)/g dry weight (DW) followed by ethanol at 0.61 mg GAE/g DW and 0.11 mg GAE/g DW for acetone. Acetone extracts inhibited Escherichia coli and Staphylococcus aureus at less than 50%; ethanol inhibited E. coli at 61.9% and S. aureus at 56.6%; and ASE water inhibited E. coli at 78.6% and S. aureus at 65.4%. The TP content of membrane concentrated extract of mushroom was 17 mg GAE in 100 mL. Membrane concentrated water extracts had a higher percentage inhibition on S. aureus than E. coli. Overall, the results were promising for further application of mushroom stipe extracts as a functional food additive. Practical Applications Mushrooms are known for their health benefits and have been identified as a good source of nutrients. The highly perishable nature of mushrooms warrants further processing and preservation to minimize losses along the supply chain. This study explores the possibility of adding value to mushroom stipes, a by-product of the fresh mushroom industry. The extracts assessed indicate the antibacterial activity and phenolic content, and the potential of using these extracts as functional ingredients in the food industry. This study provides valuable information to the scientific community and to the industries developing novel ingredients to meet the market demand for natural food additives.
Resumo:
This project has investigated the correlation between antimicrobial activity and the non-peroxide activity of particular Leptospermum-derived honeys. Initial investigations tested the efficacy of these honeys against one particular bacteria (Staphylococcus aureus), while later studies assessed the effect of this honey on a range of food pathogens, animal pathogens (e.g. in mastitis) and human pathogens (e.g. golden Staph). Using honeys sourced from around Australia and screened against several reference microorganisms, the anti-microbial potency of one particular Australian honey (from Leptospermum polygalifolium) was shown to be comparable to NZ Manuka honey (from L.scoparium). The results of this screening of active honeys against pathogenic bacteria has supported the registration of honey by Capilano Honey Limited as a “Drug” with the Therapeutic Goods Administration based on its antimicrobial activity.