5 resultados para Meteorology--Arab countries--Early works to 1800

em eResearch Archive - Queensland Department of Agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Until August 2007, Australia was one of only three countries internationally recognised to be free of equine influenza (EI). This report documents the diagnosis of the first cases of EI in Australian horses and summarises the investigations that took place over the next 5 days. During that time, a multifocal outbreak was identified across eastern New South Wales and south-eastern Queensland. The use of an influenza type A pan-reactive real-time reverse transcription polymerase chain reaction allowed rapid confirmation of suspect cases of EI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bactrocera cucumis (French 1907), the ‘cucumber fruit fly’, is a horticultural pest in Australia that primarily infests cucurbits and has also been recorded from tomatoes, papaw and several other hosts. It does not respond to known male lures, cue-lure and methyl eugenol, making monitoring and control difficult. A cucumber volatile blend lure was recently developed in Hawaii and found to be an effective female-biased attractant for the melon fly B. cucurbitae. This lure was field tested in north Queensland, Australia in McPhail traps in comparison with orange ammonia, Cera Trap® and a control, and was found to more consistently trap B. cucumis than the other lures. B. cucumis were caught at 41% of the cucumber volatile lure trap clearances, compared with 27% of the orange ammonia, 18% of the Cera Trap and 16% of the control trap clearances. The cucumber volatile lure was more attractive to B. cucumis in low population densities and also trapped B. cucumis earlier on average than the other lures. Data analysed from the site with highest trap catches (Spring Creek) showed that the cucumber volatile lure caught significantly more B. cucumis than the other traps in four of the 11 trap clearance periods, and for the remaining clearances, no other trap type caught significantly more flies than the cucumber volatile lure. The cucumber volatile lure had a strong female-biased attraction but it was not significantly more female-biased than orange ammonia or Cera Trap. Cucumber volatile lure traps were cleaner to service resulting in better quality specimens than the orange ammonia trap or Cera Trap. These findings have potential implications for market access monitoring for determining pest freedom, and for biosecurity monitoring programmes in other countries that wish to detect B. cucumis early.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variable-rate technologies and site-specific crop nutrient management require real-time spatial information about the potential for response to in-season crop management interventions. Thermal and spectral properties of canopies can provide relevant information for non-destructive measurement of crop water and nitrogen stresses. In previous studies, foliage temperature was successfully estimated from canopy-scale (mixed foliage and soil) temperatures and the multispectral Canopy Chlorophyll Content Index (CCCI) was effective in measuring canopy-scale N status in rainfed wheat (Triticum aestivum L.) systems in Horsham, Victoria, Australia. In the present study, results showed that under irrigated wheat systems in Maricopa, Arizona, USA, the theoretical derivation of foliage temperature unmixing produced relationships similar to those in Horsham. Derivation of the CCCI led to an r2 relationship with chlorophyll a of 0.53 after Zadoks stage 43. This was later than the relationship (r2 = 0.68) developed for Horsham after Zadoks stage 33 but early enough to be used for potential mid-season N fertilizer recommendations. Additionally, ground-based hyperspectral data estimated plant N (g kg)1) in Horsham with an r2 = 0.86 but was confounded by water supply and N interactions. By combining canopy thermal and spectral properties, varying water and N status can potentially be identified eventually permitting targeted N applications to those parts of a field where N can be used most efficiently by the crop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because of the variable and changing environment, advisors and farmers are seeking systems that provide risk management support at a number of time scales. The Agricultural Production Systems Research Unit, Toowoomba, Australia has developed a suite of tools to assist advisors and farmers to better manage risk in cropping. These tools range from simple rainfall analysis tools (Rainman, HowWet, HowOften) through crop simulation tools (WhopperCropper and YieldProphet) to the most complex, APSFarm, a whole-farm analysis tool. Most are derivatives of the APSIM crop model. These tools encompass a range of complexity and potential benefit to both the farming community and for government policy. This paper describes, the development and usage of two specific products; WhopperCropper and APSFarm. WhopperCropper facilitates simulation-aided discussion of growers' exposure to risk when comparing alternative crop input options. The user can readily generate 'what-if' scenarios that separate the major influences whilst holding other factors constant. Interactions of the major inputs can also be tested. A manager can examine the effects of input levels (and Southern Oscillation Index phase) to broadly determine input levels that match their attitude to risk. APSFarm has been used to demonstrate that management changes can have different effects in short and long time periods. It can be used to test local advisors and farmers' knowledge and experience of their desired rotation system. This study has shown that crop type has a larger influence than more conservative minimum soil water triggers in the long term. However, in short term dry periods, minimum soil water triggers and maximum area of the various crops can give significant financial gains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Develop a remote-sensing system that can identify canegrub infestations and provide early- warning to growers via the internet.