7 resultados para Meloidogyne incognita

em eResearch Archive - Queensland Department of Agriculture


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strawberry runner production areas in Queensland are assessed for the presence of Pratylenchus vulnus (lesion nematode) and Meloidogyne hapla (root-knot nematode) as part of the approval process for sites used in runner production under the approved runner scheme. M. hapla is known to infest strawberry. The ability of three other Meloidogyne species occurring in Queensland to infest this host was investigated. The species M. arenaria, M. incognita and M. javanica, in addition to M. hapla, were able to reproduce on strawberry roots of the cultivar 'Joy', which sustained higher nematode reproduction rates than 'Jewel' and 'Sweet Charlie'. The ability of species other than M. hapla to infest strawberry needs to be recognised in site selection for runner production, and in screening cultivars for resistance to nematodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brassicaceae plants have the potential as part of an integrated approach to replace fumigant nematicides, providing the biofumigation response following their incorporation is not offset by reproduction of plant-parasitic nematodes on their roots. Forty-three Brassicaceae cultivars were screened in a pot trial for their ability to reduce reproduction of three root-knot nematode isolates from north Queensland, Australia: M. arenaria (NQ1), M. javanica (NQ2) and M. arenaria race 2 (NQ5/7). No cultivar was found to consistently reduce nematode reproduction relative to forage sorghum, the current industry standard, although a commercial fodder radish (Raphanus sativus) and a white mustard (Sinapis alba) line were consistently as resistant to the formation of galls as forage sorghum. A second pot trial screened five commercially available Brassicaceae cultivars, selected for their biofumigation potential, for resistance to two nematode species, M. javanica (NQ2) and M. arenaria (NQ5/7). The fodder radish cv. Weedcheck, was found to be as resistant as forage sorghum to nematode reproduction. A multivariate cluster analysis using the resistance measurements, gall index, nematode number per g of root and multiplication for two nematode species (NQ2 and NQ5/7) confirmed the similarity in resistance between the radish cultivar and forage sorghum. A field trial confirmed the resistance of the fodder radish cv. Weedcheck, with a similar reduction in the number of Meloidogyne spp. juveniles recovered from the roots 8 weeks after planting. The use of fodder radish cultivars as biofumigation crops to manage root-knot nematodes in tropical vegetable production systems deserves further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant-parasitic nematodes are important pests of horticultural crops grown in tropical and subtropical regions of Australia. Burrowing nematode (Radopholus similis) is a major impediment to banana production and root-knot nematodes (predominantly Meloidogyne javanica and M. incognita) cause problems on pineapple and a range of annual vegetables, including tomato, capsicum, zucchini, watermelon, rockmelon, potato and sweet potato. In the early 1990s, nematode control in these industries was largely achieved with chemicals, with methyl bromide widely used on some subtropical vegetable crops, ethylene dibromide applied routinely to pineapples and non-volatile nematicides such as fenamiphos applied up to four times a year in banana plantations. This paper discusses the research and extension work done over the last 15 years to introduce an integrated pest management approach to nematode control in tropical and subtropical horticulture. It then discusses various components of current integrated pest management programs, including crop rotation, nematode monitoring, clean planting material, organic amendments, farming systems to enhance biological suppression of nematodes and judicious use of nematicides. Finally, options for improving current management practices are considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Root-knot nematodes (Meloidogyne spp.) are obligate, sedentary endoparasites that infect many plant species causing large economic losses worldwide. Available nematicides are being banned due to their toxicity or ozone-depleting properties and alternative control strategies are urgently required. We have produced transgenic tobacco (Nicotiana tabacum) plants expressing different dsRNA hairpin structures targeting a root-knot nematode (Meloidogyne javanica) putative transcription factor, MjTis11. We provide evidence that MjTis11 was consistently silenced in nematodes feeding on the roots of transgenic plants. The observed silencing was specific for MjTis11, with other sequence-unrelated genes being unaffected in the nematodes. Those transgenic plants able to induce silencing of MjTis11, also showed the presence of small interfering RNAs. Even though down-regulation of MjTis11 did not result in a lethal phenotype, this study demonstrates the feasibility of silencing root-knot nematode genes by expressing dsRNA in the host plant. Host-delivered RNA interference-triggered (HD-RNAi) silencing of parasite genes provides a novel disease resistance strategy with wide biotechnological applications. The potential of HD-RNAi is not restricted to parasitic nematodes but could be adapted to control other plant-feeding pests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact of three cropping histories (sugarcane, maize and soybean) and two tillage practices (conventional tillage and direct drill) on plant-parasitic and free-living nematodes in the following sugarcane crop was examined in a field trial at Bundaberg. Soybean reduced populations of lesion nematode (Pratylenchus zeae) and root-knot nematode (Meloidogyne javanica) in comparison to previous crops of sugarcane or maize but increased populations of spiral nematode (Helicotylenchus dihystera) and maintained populations of dagger nematode (Xiphinema elongatum). However the effect of soybean on P zeae and M. javanica was no longer apparent 15 weeks after planting sugarcane, while later in the season, populations of these nematodes following soybean were as high as or higher than maize or sugarcane. Populations of P zeae were initially reduced by cultivation but due to strong resurgence tended to be higher in conventionally tilled than direct drill plots at the end of the plant crop. Even greater tillage effects were observed with M. javanica and X. elongatum, as nematode populations were significantly higher in conventionally tilled than direct drill plots late in the season. Populations of free-living nematodes in the upper 10 cm of soil were initially highest following soybean, but after 15, 35 and 59 weeks were lower than after sugarcane and contained fewer omnivorous and predatory nematodes. Conventional tillage increased populations of free-living nematodes in soil in comparison to direct drill and was also detrimental to omnivorous and predatory nematodes. These results suggest that crop rotation and tillage not only affect plant-parasitic nematodes directly, but also have indirect effects by impacting on natural enemies that regulate nematode populations. More than 2 million nematodes/m(2) were often present in crop residues on the surface of direct drill plots. Bacterial-feeding nematodes were predominant in residues early in the decomposition process but fungal-feeding nematodes predominated after 15 weeks. This indicates that fungi become an increasingly important component of the detritus food web as decomposition proceeds, and that that the rate of nutrient cycling decreases with time. Correlations between total numbers of free-living nematodes and mineral N concentrations in crop residues and surface soil suggested that the free-living nematode community may provide an indication of the rate of mineralisation of N from organic matter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A field experiment was established in which an amendment of poultry manure and sawdust (200 t/ha) was incorporated into some plots but not others and then a permanent pasture or a sequence of biomass-producing crops was grown with and without tillage, with all biomass being returned to the soil. After 4 years, soil C levels were highest in amended plots, particularly those that had been cropped using minimum tillage, and lowest in non-amended and fallowed plots, regardless of how they had been tilled. When ginger was planted, symphylans caused severe damage to all treatments, indicating that cropping, tillage and organic matter management practices commonly used to improve soil health are not necessarily effective for all crops or soils. During the rotational phase of the experiment, the development of suppressiveness to three key pathogens of ginger was monitored using bioassays. Results for root-knot nematode (Meloidogyne javanica) indicated that for the first 2 years, amended soil was more suppressive than non-amended soil from the same cropping and tillage treatment, whereas under pasture, the amendment only enhanced suppressiveness in the first year. Suppressiveness was generally associated with higher C levels and enhanced biological activity (as measured by the rate of fluorescein diacetate (FDA) hydrolysis and numbers of free-living nematodes). Reduced tillage also enhanced suppressiveness, as gall ratings and egg counts in the second and third years were usually significantly lower in cropped soils under minimum rather than conventional tillage. Additionally, soil that was not disturbed during the process of setting up bioassays was more suppressive than soil which had been gently mixed by hand. Results of bioassays with Fusarium oxysporum f. sp. zingiberi were too inconsistent to draw firm conclusions, but the severity of fusarium yellows was generally higher in fumigated fallow soil than in other treatments, with soil management practices having little impact on disease severity. With regard to Pythium myriotylum, biological factors capable of reducing rhizome rot were present, but were not effective enough to suppress the disease under environmental conditions that were ideal for disease development.