6 resultados para Measurements’ Interpretation

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whilst the topic of soil salinity has received a substantive research effort over the years, the accurate measurement and interpretation of salinity tolerance data remain problematic. The tolerance of four perennial grass species (non-halophytes) to sodium chloride (NaCl) dominated salinity was determined in a free-flowing sand culture system. Although the salinity tolerance of non-halophytes is often represented by the threshold salinity model (bent-stick model), none of the species in the current study displayed any observable salinity threshold. Further, the observed yield decrease was not linear as suggested by the model. On re-examination of earlier datasets, we conclude that the threshold salinity model does not adequately describe the physiological processes limiting growth of non-halophytes in saline soils. Therefore, the use of the threshold salinity model is not recommended for non-halophytes, but rather, a model which more accurately reflects the physiological response observed in these saline soils, such as an exponential regression curve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensory analysis of food involves the measurement, interpretation and understanding of human responses to the properties of food perceived by the senses such as sight, smell, and taste (Cozzolino et al. 2005). It is important to have a quantitative means for assessing sensory properties in a reasonable way, to enable the food industry to rapidly respond to the changing demands of both consumers and the market. Aroma and flavour are among the most important properties for the consumer, and numerous studies have been performed in attempts to find correlations between sensory qualities and objective instrumental measurements. Rapid instrumental methods such as near infrared spectroscopy (NIR) might be advantageous to predict quality of different foods and agricultural products due to the speed of analysis, minimum sample preparation and low cost. The advantages of such technologies is not only to assess chemical structures but also to build an spectrum, characteristic of the sample, which behaves as a “finger print” of the sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensory analysis of food involves the measurement, interpretation and understanding of human responses to the properties of food perceived by the senses such as sight, smell, and taste (Cozzolino et al. 2005). It is important to have a quantitative means for assessing sensory properties in a reasonable way, to enable the food industry to rapidly respond to the changing demands of both consumers and the market. Aroma and flavour are among the most important properties for the consumer and numerous studies have been performed in attempts to find correlations between sensory qualities and objective instrumental measurements. Rapid, non-destructive instrumental methods such as near infrared spectroscopy (NIR) might be advantageous to predict quality of food and agricultural products due to the speed of analysis, minimum sample preparation and low cost. The advantages of such technologies are not only to assess chemical structures but also to build a spectrum, characteristic of the sample, which behaves as a “finger print”.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report on evidence of shrinkage of live coral trout during professional fishing operations on the Great Barrier Reef in 2000. Excel data includes the following fields: Column A. Fish (fish number from 1 -24) Column B. Bin (1-8, container the fish was held in during the experiment) Column C. Measure (1-7, number of the measurement of each fish) Column D. Observer (1 or 2, making the measurement) Column E. Time 2 Column F. Time (time of the day the measurement was made) Column G. FL (Fork Length) Column H. TL (Total Length) Column I. Difference (difference in length between measures) Column J. Order Column K. Temperature (surface water temp under the boat)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement of individual emission sources (e.g., animals or pen manure) within intensive livestock enterprises is necessary to test emission calculation protocols and to identify targets for decreased emissions. In this study, a vented, fabric-covered large chamber (4.5 × 4.5 m, 1.5 m high; encompassing greater spatial variability than a smaller chamber) in combination with on-line analysis (nitrous oxide [N2O] and methane [CH4] via Fourier Transform Infrared Spectroscopy; 1 analysis min-1) was tested as a means to isolate and measure emissions from beef feedlot pen manure sources. An exponential model relating chamber concentrations to ambient gas concentrations, air exchange (e.g., due to poor sealing with the surface; model linear when ≈ 0 m3 s-1), and chamber dimensions allowed data to be fitted with high confidence. Alternating manure source emission measurements using the large-chamber and the backward Lagrangian stochastic (bLS) technique (5-mo period; bLS validated via tracer gas release, recovery 94-104%) produced comparable N2O and CH4 emission values (no significant difference at P < 0.05). Greater precision of individual measurements was achieved via the large chamber than for the bLS (mean ± standard error of variance components: bLS half-hour measurements, 99.5 ± 325 mg CH4 s-1 and 9.26 ± 20.6 mg N2O s-1; large-chamber measurements, 99.6 ± 64.2 mg CH4 s-1 and 8.18 ± 0.3 mg N2O s-1). The large-chamber design is suitable for measurement of emissions from manure on pen surfaces, isolating these emissions from surrounding emission sources, including enteric emissions. © © American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spot measurements of methane emission rate (n = 18 700) by 24 Angus steers fed mixed rations from GrowSafe feeders were made over 3- to 6-min periods by a GreenFeed emission monitoring (GEM) unit. The data were analysed to estimate daily methane production (DMP; g/day) and derived methane yield (MY; g/kg dry matter intake (DMI)). A one-compartment dose model of spot emission rate v. time since the preceding meal was compared with the models of Wood (1967) and Dijkstra et al. (1997) and the average of spot measures. Fitted values for DMP were calculated from the area under the curves. Two methods of relating methane and feed intakes were then studied: the classical calculation of MY as DMP/DMI (kg/day); and a novel method of estimating DMP from time and size of preceding meals using either the data for only the two meals preceding a spot measurement, or all meals for 3 days prior. Two approaches were also used to estimate DMP from spot measurements: fitting of splines on a 'per-animal per-day' basis and an alternate approach of modelling DMP after each feed event by least squares (using Solver), summing (for each animal) the contributions from each feed event by best-fitting a one-compartment model. Time since the preceding meal was of limited value in estimating DMP. Even when the meal sizes and time intervals between a spot measurement and all feeding events in the previous 72 h were assessed, only 16.9% of the variance in spot emission rate measured by GEM was explained by this feeding information. While using the preceding meal alone gave a biased (underestimate) of DMP, allowing for a longer feed history removed this bias. A power analysis taking into account the sources of variation in DMP indicated that to obtain an estimate of DMP with a 95% confidence interval within 5% of the observed 64 days mean of spot measures would require 40 animals measured over 45 days (two spot measurements per day) or 30 animals measured over 55 days. These numbers suggest that spot measurements could be made in association with feed efficiency tests made over 70 days. Spot measurements of enteric emissions can be used to define DMP but the number of animals and samples are larger than are needed when day-long measures are made.