3 resultados para Measurement system

em eResearch Archive - Queensland Department of Agriculture


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Odour impacts and concerns are an impediment to the growth of the Australian chicken meat industry. To manage these, the industry has to be able to demonstrate the efficacy of its odour reduction strategies scientifically and defensibly; however, it currently lacks reliable, cost effective and objective tools to do so. This report describes the development of an artificial olfaction system (AOS) to measure meat chicken farm odour. This report describes the market research undertaken to determine the demand for such a tool, the development and evaluation of three AOS prototypes, data analysis and odour prediction modelling, and the development of two complementary odour measurement tools, namely, a volatile organic compound (VOC) pre-concentrator and a field olfactometer. This report is aimed at investors in poultry odour research and those charged with, or interested in, assessment of odour on chicken farms, including farm managers, integrators, their consultants, regulators and researchers. The findings will influence the focus of future environmental odour measurement research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we assessed a broad range of barley breeding lines and commercial varieties by three hardness methods (two particle size methods and one crush resistance method (SKCS—Single-Kernel Characterization System), grown at multiple sites to see if there was variation in barley hardness and if that variation was genetic or environmentally controlled. We also developed near-infrared reflectance (NIR) calibrations for these three hardness methods to ascertain if NIR technology was suitable for rapid screening of breeding lines or specific populations. In addition, we used this data to identify genetic regions that may be associated with hardness. There were significant (p<0.05) genetic effects for the three hardness methods. There were also environmental effects, possibly linked to the effect of protein on hardness, i.e. increasing protein resulted in harder grain. Heritability values were calculated at >85% for all methods. The NIR calibrations, with R2 values of >90%, had Standard Error of Prediction values of 0.90, 72 and 4.0, respectively, for the three hardness methods. These equations were used to predict hardness values of a mapping population which resulted in genetic markers being identified on all chromosomes but chromosomes 2H, 3H, 5H, 6H and 7H had markers with significant LOD scores. The two regions on 5H were on the distal end of both the long and short arms. The region that showed significant LOD score was on the long arm. However, the region on the short arm associated with the hardness (hordoindoline) genes did not have significant LOD scores. The results indicate that barley hardness is influenced by both genotype and environment and that the trait is heritable, which would allow breeders to develop very hard or soft varieties if required. In addition, NIR was shown to be a reliable tool for screening for hardness. While the data set used in this study has a relatively low variation in hardness, the tools developed could be applied to breeding populations that have large variation in barley grain hardness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whilst the topic of soil salinity has received a substantive research effort over the years, the accurate measurement and interpretation of salinity tolerance data remain problematic. The tolerance of four perennial grass species (non-halophytes) to sodium chloride (NaCl) dominated salinity was determined in a free-flowing sand culture system. Although the salinity tolerance of non-halophytes is often represented by the threshold salinity model (bent-stick model), none of the species in the current study displayed any observable salinity threshold. Further, the observed yield decrease was not linear as suggested by the model. On re-examination of earlier datasets, we conclude that the threshold salinity model does not adequately describe the physiological processes limiting growth of non-halophytes in saline soils. Therefore, the use of the threshold salinity model is not recommended for non-halophytes, but rather, a model which more accurately reflects the physiological response observed in these saline soils, such as an exponential regression curve.