5 resultados para Mating system Paternity assurance

em eResearch Archive - Queensland Department of Agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The frugivorous ‘true’ fruit fly, Bactrocera tryoni (Queensland fruit fly), is presumed to have a non-resourced-based lek mating system. This is largely untested, and contrary data exists to suggest Bactrocera tryoni may have a resource-based mating system focused on fruiting host plants. We tested the mating system of Bactrocera tryoni, and its close sibling Bactrocera neohumeralis, in large field cages using laboratory reared flies. We used observational experiments that allowed us to determine if: (i) mating pairs were aggregated or non-aggregated; (ii) mating system was resource or non-resource based; (iii) flies utilised possible landmarks (tall trees over short) as mate-rendezvous sites; and (iv) males called females from male-dominated leks. We recorded nearly 250 Bactrocera tryoni mating pairs across all experiments, revealing that: (i) mating pairs were aggregated; (ii) mating nearly always occurred in tall trees over short; (iii) mating was non-resource based; and (iv) that males and females arrived at the mate-rendezvous site together with no evidence that males preceded females. Bactrocera neohumeralis copulations were much more infrequent (only 30 mating pairs in total), but for those pairs there was a similar preference for tall trees and no evidence of a resource-based mating system. Some aspects of Bactrocera tryoni mating behaviour align with theoretical expectations of a lekking system, but others do not. Until evidence for unequivocal female choice can be provided (as predicted under a true lek), the mating system of Bactrocera tryoni is best described as a non-resource based, aggregation system for which we also have evidence that land-marking may be involved. This article is protected by copyright. All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The frugivorous “true” fruit fly, Bactrocera tryoni (Queensland fruit fly), is presumed to have a nonresourced-based lek mating system. This is largely untested, and contrary data exists to suggest Bactrocera tryoni may have a resource-based mating system focused on fruiting host plants. We tested the mating system of Bactrocera tryoni, and its close sibling Bactrocera neohumeralis, in large field cages using laboratory reared flies. We used observational experiments that allowed us to determine if: (i) mating pairs were aggregated or nonaggregated; (ii) mating system was resource or nonresource based; (iii) flies utilized possible landmarks (tall trees over short) as mate-rendezvous sites; and (iv) males called females from male-dominated leks. We recorded nearly 250 Bactrocera tryoni mating pairs across all experiments, revealing that: (i) mating pairs were aggregated; (ii) mating nearly always occurred in tall trees over short; (iii) mating was nonresource based; and (iv) that males and females arrived at the mate-rendezvous site together with no evidence that males preceded females. Bactrocera neohumeralis copulations were much more infrequent (only 30 mating pairs in total), but for those pairs there was a similar preference for tall trees and no evidence of a resource-based mating system. Some aspects of Bactrocera tryoni mating behavior align with theoretical expectations of a lekking system, but others do not. Until evidence for unequivocal female choice can be provided (as predicted under a true lek), the mating system of Bactrocera tryoni is best described as a nonresource based, aggregation system for which we also have evidence that land-marking may be involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spotted gum species complex represents a group of four eucalypt hardwood taxa that have a native range that spans the east coast of Australia, with a morphological cline from Victoria to northern Queensland. Of this group, Corymbia citriodora subsp. variegata (CCV) is widespread in south-eastern Queensland and northern New South Wales. It is currently the most commonly harvested native hardwood in Queensland. However, little basic knowledge of the reproductive biology of the species is available to inform genetic improvement and resource management programmes. Here we take an integrative approach, using both field and molecular data, to identify ecological factors important to mating patterns in native populations of CCV. Field observation of pollinator visitation and flowering phenology of 20 trees showed that foraging behaviour of pollinator guilds varies depending on flowering phenology and canopy structure. A positive effect of tree mean flowering effort was found on insect visitation, while bat visitation was predicted by tree height and by the number of trees simultaneously bearing flowers. Moreover, introduced honeybees were observed frequently, performing 73% of detected flower visits. Conversely, nectar-feeding birds and mammals were observed sporadically with lorikeets and honeyeaters each contributing to 11% of visits. Fruit bats, represented solely by the grey-headed flying fox, performed less than 2% of visits. Genotyping at six microsatellite markers in 301 seeds from 17 families sampled from four of Queensland's native forests showed that CCV displays a mixed-mating system that is mostly outcrossing (tm = 0.899 ± 0.021). Preferential effective pollination from near-neighbours was detected by means of maximum-likelihood paternity analysis with up to 16% of reproduction events resulting from selfing. Forty to 48% of fertilising pollen was also carried from longer distance (>60 m). Marked differences in foraging behaviour and visitation frequency between observed pollinator guilds suggests that the observed dichotomy of effective pollen movement in spotted gums may be due to frequent visit from introduced honeybees favouring geitonogamy and sporadic visits from honeyeaters and fruit bats resulting in potential long-distance pollinations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intent of this study was to design, document and implement a Quality Management System (QMS) into a laboratory that incorporated both research and development (R&D) and routine analytical activities. In addition, it was necessary for the QMS to be easily and efficiently maintained to: (a) provide documented evidence that would validate the system's compliance with a certifiable standard, (b) fit the purpose of the laboratory, (c) accommodate prevailing government policies and standards, and (d) promote positive outcomes for the laboratory through documentation and verification of the procedures and methodologies implemented. Initially, a matrix was developed that documented the standards' requirements and the necessary steps to be made to meet those requirements. The matrix provided a check mechanism on the progression of the system's development. In addition, it was later utilised in the Quality Manual as a reference tool for the location of full procedures documented elsewhere in the system. The necessary documentation to build and monitor the system consisted of a series of manuals along with forms that provided auditable evidence of the workings of the QMS. Quality Management (QM), in one form or another, has been in existence since the early 1900's. However, the question still remains: is it a good thing or just a bugbear? Many of the older style systems failed because they were designed by non-users, fiercely regulatory, restrictive and generally deemed to be an imposition. It is now considered important to foster a sense of ownership of the system by the people who use the system. The system's design must be tailored to best fit the purpose of the operations of the facility if maximum benefits to the organisation are to be gained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper outlines the expectations of a wide range of stakeholders for environmental assurance in the pastoral industries and agriculture generally. Stakeholders consulted were domestic consumers, rangeland graziers, members of environmental groups, companies within meat and wool supply chains, and agricultural industry, environmental and consumer groups. Most stakeholders were in favour of the application of environmental assurance to agriculture, although supply chains and consumers had less enthusiasm for this than environmental and consumer groups. General public good benefits were more important to environmental and consumer groups, while private benefits were more important to consumers and supply chains. The 'ideal' form of environmental assurance appears to be a management system that provides for continuous improvement in environmental, quality and food safety outcomes, combined with elements of ISO 14024 eco-labelling such as life-cycle assessment, environmental performance criteria, third-party certification, labelling and multi-stakeholder involvement. However, market failure prevents this from being implemented and will continue to do so for the foreseeable future. In the short term, members of supply chains (the people that must implement and fund environmental assurance) want this to be kept simple and low cost, to be built into their existing industry standards and to add value to their businesses. As a starting point, several agricultural industry organisations favour the use of a basic management system, combining continuous improvement, risk assessment and industry best management practice programs, which can be built on over time to meet regulator, market and community expectations.