7 resultados para Massive Corals
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Reef-building corals are an example of plastic photosynthetic organisms that occupy environments of high spatiotemporal variations in incident irradiance. Many phototrophs use a range of photoacclimatory mechanisms to optimize light levels reaching the photosynthetic units within the cells. In this study, we set out to determine whether phenotypic plasticity in branching corals across light habitats optimizes potential light utilization and photosynthesis. In order to do this, we mapped incident light levels across coral surfaces in branching corals and measured the photosynthetic capacity across various within-colony surfaces. Based on the field data and modelled frequency distribution of within-colony surface light levels, our results show that branching corals are substantially self-shaded at both 5 and 18 m, and the modal light level for the within-colony surface is 50 mu mol photons m(-2) s(-1). Light profiles across different locations showed that the lowest attenuation at both depths was found on the inner surface of the outermost branches, while the most self-shading surface was on the bottom side of these branches. In contrast, vertically extended branches in the central part of the colony showed no differences between the sides of branches. The photosynthetic activity at these coral surfaces confirmed that the outermost branches had the greatest change in sun- and shade-adapted surfaces; the inner surfaces had a 50 % greater relative maximum electron transport rate compared to the outer side of the outermost branches. This was further confirmed by sensitivity analysis, showing that branch position was the most influential parameter in estimating whole-colony relative electron transport rate (rETR). As a whole, shallow colonies have double the photosynthetic capacity compared to deep colonies. In terms of phenotypic plasticity potentially optimizing photosynthetic capacity, we found that at 18 m, the present coral colony morphology increased the whole-colony rETR, while at 5 m, the colony morphology decreased potential light utilization and photosynthetic output. This result of potential energy acquisition being underutilized in shallow, highly lit waters due to the shallow type morphology present may represent a trade-off between optimizing light capture and reducing light damage, as this type morphology can perhaps decrease long-term costs of and effect of photoinhibition. This may be an important strategy as opposed to adopting a type morphology, which results in an overall higher energetic acquisition. Conversely, it could also be that maximizing light utilization and potential photosynthetic output is more important in low-light habitats for Acropora humilis.
Resumo:
In tropical forests, natural disturbance creates opportunities for species to claim previously utilized space and resources and is considered an important mechanism in the maintenance of species diversity. However, ecologists have long recognized that disturbance also promotes exotic plant invasions. Cyclones cause extensive defoliation, loss of major branches and multiple tree falls, resulting in a significantly more open canopy and increased light and heat levels in the understorey. The widespread and massive disturbance caused by cyclones provides ideal conditions for rapid recruitment and spread of invasive species. The ecological roles of invasive species in rainforest habitats following such a severe disturbance are poorly understood. Severe category 4 Cyclone Larry crossed the North Queensland coast in March 2006 causing massive disturbance to rainforest habitats from Tully to Cairns and west to the Atherton Tablelands. We established 10 plots in an area extensively damaged by this cyclone near El Arish in North Queensland. On each plot nine 2 × 2 m quadrats were established with three quadrats per plot in each of the following treatments: (i) complete debris removal down to the soil layer, (ii) removal of coarse woody debris only, and (iii) uncleared. We monitored recruitment, growth and mortality of all native and invasive species in the 90 quadrats every 3 months since the cyclone. Here we present the recruitment dynamics of invasive species across the study area in relation to the level of disturbance, the type of quadrat treatment, and the diversity and abundance of the native recruiting flora over the first 12 months post-cyclone. Our results suggest that invasive species will mostly comprise a transient component of the flora in the early stages of the successional response. However, some species may have longer-term effects on the successional trajectory of the rainforest and future forest composition and structure.
Resumo:
There are two major pests of sorghum in Australia, the sorghum midge, Stenodiplosis sorghicola (Coquillett), and the corn earworm, Helicoverpa armigera (Hübner). During the past 10 years the management of these pests has undergone a revolution, due principally to the development of sorghum hybrids with resistance to sorghum midge. Also contributing has been the adoption of a nucleopolyhedrovirus for the management of corn earworm. The practical application of these developments has led to a massive reduction in the use of synthetic insecticides for the management of major pests of sorghum in Australia. These changes have produced immediate economic, environmental and social benefits. Other flow-on benefits include providing flexibility in planting times, the maintenance of beneficial arthropods and utilisation of sorghum as a beneficial arthropod nursery, a reduction in midge populations and a reduction in insecticide resistance development in corn earworm. Future developments in sorghum pest management are discussed.
Resumo:
The majority of Australian weeds are exotic plant species that were intentionally introduced for a variety of horticultural and agricultural purposes. A border weed risk assessment system (WRA) was implemented in 1997 in order to reduce the high economic costs and massive environmental damage associated with introducing serious weeds. We review the behaviour of this system with regard to eight years of data collected from the assessment of species proposed for importation or held within genetic resource centres in Australia. From a taxonomic perspective, species from the Chenopodiaceae and Poaceae were most likely to be rejected and those from the Arecaceae and Flacourtiaceae were most likely to be accepted. Dendrogram analysis and classification and regression tree (TREE) models were also used to analyse the data. The latter revealed that a small subset of the 35 variables assessed was highly associated with the outcome of the original assessment. The TREE model examining all of the data contained just five variables: unintentional human dispersal, congeneric weed, weed elsewhere, tolerates or benefits from mutilation, cultivation or fire, and reproduction by vegetative propagation. It gave the same outcome as the full WRA model for 71% of species. Weed elsewhere was not the first splitting variable in this model, indicating that the WRA has a capacity for capturing species that have no history of weediness. A reduced TREE model (in which human-mediated variables had been removed) contained four variables: broad climate suitability, reproduction in less or than equal to 1 year, self-fertilisation, and tolerates and benefits from mutilation, cultivation or fire. It yielded the same outcome as the full WRA model for 65% of species. Data inconsistencies and the relative importance of questions are discussed, with some recommendations made for improving the use of the system.
Resumo:
Many terrestrial plants form complex morphological structures and will alter these growth patterns in response to light direction. Similarly reef building corals have high morphological variation across coral families, with many species also displaying phenotypic plasticity across environmental gradients. In particular, the colony geometry in branching corals is altered by the frequency, location and direction of branch initiation and growth. This study demonstrates that for the branching species Acropora pulchra, light plays a key role in axial polyp differentiation and therefore axial corallite development - the basis for new branch formation. A. pulchra branches exhibited a directional growth response, with axial corallites only developing when light was available, and towards the incident light. Field experimentation revealed that there was a light intensity threshold of 45 mu mol m(-2) s(-1), below which axial corallites would not develop and this response was blue light (408-508 nm) dependent. There was a twofold increase in axial corallite growth above this light intensity threshold and a fourfold increase in axial corallite growth under the blue light treatment. These features of coral branch growth are highly reminiscent of the initiation of phototropic branch growth in terrestrial plants, which is directed by the blue light component of sunlight.
Resumo:
There has been recent interest in determining the upper limits to the feasibility of weed eradication. Although a number of disparate factors determine the success of an eradication program, ultimately eradication feasibility must be viewed in the context of the amount of investment that can be made. The latter should reflect the hazard posed by an invasion, with greater investment justified by greater threats. In simplest terms, the effort (and hence investment) to achieve weed eradication comprises the detection effort required to delimit an invasion plus the search and control effort required to prevent reproduction until extirpation occurs over the entire infested area. The difficulty of estimating the required investment at the commencement of a weed eradication program (as well as during periodic reviews) is a serious problem. Bioeconomics show promise in determining the optimal approach to managing weed invasions, notwithstanding ongoing difficulties in estimating the costs and benefits of eradication and alternative invasion management strategies. A flexible approach to the management of weed invasions is needed, allowing for the adoption of another strategy when it becomes clear that the probability of eradication is low, owing to resourcing or intractable technical issues. Whether the considerable progress that has been achieved towards eradication of the once massive witchweed invasion can be duplicated for other weeds of agricultural systems will depend to a large extent upon investment (. $250 million over 50 yr in this instance). Weeds of natural ecosystems seem destined to remain more difficult eradication targets for a variety of reasons, including higher impedance to eradication, more difficulty in valuing the benefits arising from eradication, and possibly less willingness to pay from society at large.
Resumo:
As atmospheric levels of CO2 increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO2 conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification.