4 resultados para Masa muscular
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The genetics of heifer performance in tropical 'wet' and 'dry' seasons, and relationships with steer performance, were studied in Brahman (BRAH) and Tropical Composite (TCOMP) (50% Bos indicus, African Sanga or other tropically adapted Bos taurus; 50% non-tropically adapted Bos taurus) cattle of northern Australia. Data were from 2159 heifers (1027 BRAH, 1132 TCOMP), representing 54 BRAH and 51 TCOMP sires. Heifers were assessed after post-weaning 'wet' (ENDWET) and 'dry' (ENDDRY) seasons. Steers were assessed post-weaning, at feedlot entry, over a 70-day feed test, and after similar to 120-day finishing. Measures studied in both heifers and steers were liveweight (LWT), scanned rump fat, rib fat and M. longissimus area (SEMA), body condition score (CS), hip height (HH), serum insulin-like growth factor-I concentration (IGF-I), and average daily gains (ADG). Additional steer measures were scanned intra-muscular fat%, flight time, and daily (DFI) and residual feed intake (RFI). Uni- and bivariate analyses were conducted for combined genotypes and for individual genotypes. Genotype means were predicted for a subset of data involving 34 BRAH and 26 TCOMP sires. A meta-analysis of genetic correlation estimates examined how these were related to the difference between measurement environments for specific traits. There were genotype differences at the level of means, variances and genetic correlations. BRAH heifers were significantly (P < 0.05) faster-growing in the 'wet' season, slower-growing in the 'dry' season, lighter at ENDDRY, and taller and fatter with greater CS and IGF-I at both ENDWET and ENDDRY. Heritabilities were generally in the 20 to 60% range for both genotypes. Phenotypic and genetic variances, and genetic correlations, were commonly lower for BRAH. Differences were often explained by the long period of tropical adaptation of B. indicus. Genetic correlations were high between corresponding measures at ENDWET and ENDDRY, positive between fat and muscle measures in TCOMP but negative in BRAH (mean of 13 estimates 0.50 and -0.19, respectively), and approximately zero between steer feedlot ADG and heifer ADG in BRAH. Numerous genetic correlations between heifers and steers differed substantially from unity, especially in BRAH, suggesting there may be scope to select differently in the sexes where that would aid the differing roles of heifers and steers in production. Genetic correlations declined as measurement environments became more different, the rates of decline (environment sensitivity) sometimes differing with genotype. Similar measures (LWT, HH and ADG; IGF-I at ENDWET in TCOMP) were genetically correlated with steer DFI in heifers as in steers. Heifer SEMA was genetically correlated with steer feedlot RFI in BRAH (0.75 +/- 0.27 at ENDWET, 0.66 +/- 0.24 at ENDDRY). Selection to reduce steer RFI would reduce SEMA in BRAH heifers but otherwise have only small effects on heifers before their first joining.
Resumo:
Sodium cyanide poison is potentially a more humane method to control wild dogs than sodium fluoroacetate (1080) poison. This study quantified the clinical signs and duration of cyanide toxicosis delivered by the M-44 ejector. The device delivered a nominal 0.88 g of sodium cyanide, which caused the animal to loose the menace reflex in a mean of 43 s, and the animal was assumed to have undergone cerebral hypoxia after the last visible breath. The mean time to cerebral hypoxia was 156 s for a vertical pull and 434 s for a side pull. The difference was possibly because some cyanide may be lost in a side pull. There were three distinct phases of cyanide toxicosis: the initial phase was characterised by head shaking, panting and salivation; the immobilisation phase by incontinence, ataxia and loss of the righting reflex; and the cerebral hypoxia phase by a tetanic seizure. Clinical signs that were exhibited in more than one phase of cyanide toxicosis included retching, agonal breathing, vocalisation, vomiting, altered levels of ocular reflex, leg paddling, tonic muscular spasms, respiratory distress and muscle fasciculations of the muzzle.
Resumo:
Carotenoids are associated with various health benefits, such as prevention of age-related macular degeneration, cataract, certain cancers, rheumatoid arthritis, muscular dystrophy and cardiovascular problems. As microalgae contain considerable amounts of carotenoids, there is a need to find species with high carotenoid content. Out of hundreds of Australian isolates, twelve microalgal species were screened for carotenoid profiles, carotenoid productivity, and in vitro antioxidant capacity (total phenolic content (TPC) and ORAC). The top four carotenoid producers at 4.68-6.88 mg/g dry weight (DW) were Dunaliella salina, Tetraselmis suecica, Isochrysis galbana, and Pavlova salina. TPC was low, with D. salina possessing the highest TPC (1.54 mg Gallic Acid Equivalents/g DW) and ORAC (577 μmol Trolox Equivalents/g DW). Results indicate that T. suecica, D. salina, P. salina and I. galbana could be further developed for commercial carotenoid production.