6 resultados para Marginal Functions

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Planned grazing systems are being introduced to beef cattle enterprises across the marginal cropping lands of Queensland, as they are on more extensive grazing properties. Systems range from continuous grazing with opportunistic summer rest periods to cell systems with more than 60 paddocks. The aim of planned grazing is to increase production, improve sustainability and increase economic viability from both the pastured and cropping lands of a property. Managing the more intensive grazing systems on native or sown pastures with strategic summer and winter forage crops is a challenge under the variable rainfall conditions. Under favourable conditions, integrating summer and winter crops with summer-growing grass-based pastures offers a wider range of options for breeding, finishing and marketing cattle. The integration of pasture grazing systems with opportunistic forage cropping systems on marginal cropping lands is discussed, and a current research project assessing grazing systems is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rich suite of pasture legumes and grasses have been released for the Queensland grain belt, particularly from forage evaluation programs carried out during the past 50 years (Gramshaw and Walker 1988; http://www.pi.csiro.au/ahpc/). Thus, there is an extensive and comprehensive knowledge of the adaptation of those species and adaptation is being extended widely - for example, to farmer groups in 'LeyGrain' workshops developed and delivered by the authors, and as written information (e.g. Lloyd et al. 2006; 2007a; 2007b) and on the website www.dpi.qld.gov.au. However, our knowledge is broad and, as we come to understand natural systems, their limitations and the extent of variation within those systems, it is equally clear that our knowledge of pasture plant adaptation is not as well defined as it needs to be. It is an interesting conflict - the more we understand, the more we begin to realise our lack of understanding. The appropriate species for sowing in different situations are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Winter cereal cropping is marginal in south-west Queensland because of low and variable rainfall and declining soil fertility. Increasing the soil water storage and the efficiency of water and nitrogen (N) use is essential for sustainable cereal production. The effect of zero tillage and N fertiliser application on these factors was evaluated in wheat and barley from 1996 to 2001 on a grey Vertosol. Annual rainfall was above average in 1996, 1997, 1998 and 1999 and below average in 2000 and 2001. Due to drought, no crop was grown in the 2000 winter cropping season. Zero tillage improved fallow soil water storage by a mean value of 20 mm over 4 years, compared with conventional tillage. However, mean grain yield and gross margin of wheat were similar under conventional and zero tillage. Wheat grain yield and/or grain protein increased with N fertiliser application in all years, resulting in an increase in mean gross margin over 5 years from $86/ha, with no N fertiliser applied, to $250/ha, with N applied to target ≥13% grain protein. A similar increase in gross margin occurred in barley where N fertiliser was applied to target malting grade. The highest N fertiliser application rate in wheat resulted in a residual benefit to soil N supply for the following crop. This study has shown that profitable responses to N fertiliser addition in wheat and barley can be obtained on long-term cultivated Vertosols in south-west Queensland when soil water reserves at sowing are at least 60% of plant available water capacity, or rainfall during the growing season is above average. An integrative benchmark for improved N fertiliser management appears to be the gross margin/water use of ~$1/ha.mm. Greater fallow soil water storage or crop water use efficiency under zero tillage has the potential to improve winter cereal production in drier growing seasons than experienced during the period of this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The global importance of grasslands is indicated by their extent; they comprise some 26% of total land area and 80% of agriculturally productive land. The majority of grasslands are located in tropical developing countries where they are particularly important to the livelihoods of some one billion poor peoples. Grasslands clearly provide the feed base for grazing livestock and thus numerous high-quality foods, but such livestock also provide products such as fertilizer, transport, traction, fibre and leather. In addition, grasslands provide important services and roles including as water catchments, biodiversity reserves, for cultural and recreational needs, and potentially a carbon sink to alleviate greenhouse gas emissions. Inevitably, such functions may conflict with management for production of livestock products. Much of the increasing global demand for meat and milk, particularly from developing countries, will have to be supplied from grassland ecosystems, and this will provide difficult challenges. Increased production of meat and milk generally requires increased intake of metabolizable energy, and thus increased voluntary intake and/or digestibility of diets selected by grazing animals. These will require more widespread and effective application of improved management. Strategies to improve productivity include fertilizer application, grazing management, greater use of crop by-products, legumes and supplements and manipulation of stocking rate and herbage allowance. However, it is often difficult to predict the efficiency and cost-effectiveness of such strategies, particularly in tropical developing country production systems. Evaluation and on-going adjustment of grazing systems require appropriate and reliable assessment criteria, but these are often lacking. A number of emerging technologies may contribute to timely low-cost acquisition of quantitative information to better understand the soil-pasture-animal interactions and animal management in grassland systems. Development of remote imaging of vegetation, global positioning technology, improved diet markers, near IR spectroscopy and modelling provide improved tools for knowledge-based decisions on the productivity constraints of grazing animals. Individual electronic identification of animals offers opportunities for precision management on an individual animal basis for improved productivity. Improved outcomes in the form of livestock products, services and/or other outcomes from grasslands should be possible, but clearly a diversity of solutions are needed for the vast range of environments and social circumstances of global grasslands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient ways to re-establish pastures are needed on land that requires a rotation between pastures and crops. We conducted trials in southern inland Queensland with a range of tropical perennial grasses sown into wheat stubble that was modified in various ways. Differing seedbed preparations involved cultivation or herbicide sprays, with or without fertilizer at sowing. Seed was broadcast and sowing time ranged from spring through to autumn on 3 different soil types. Seed quality and post-sowing rainfall were major determinants of the density of sown grass plants in the first year. Light cultivation sometimes enhanced establishment compared with herbicide spraying of standing stubble, most often on harder-setting soils. A nitrogen + phosphorus mixed fertilizer rarely produced any improvement in sown grass establishment and sometimes increased weed competition. The effects were similar for all types of grass seed from hairy fascicles to large, smooth panicoid seeds and minute Eragrostis seeds. There was a strong inverse relationship between the initial density of sown grass established and the level of weed competition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trials in the Condamine-Balonne basin, Australia, compared 11 promising perennial pasture grass accessions (4 Bothriochloa, 2 Cenchrus, 2 Urochloa and 1 each of Digitaria, Eragrostis and Panicum species) against the best similar commercial cultivars on the basis of ease of establishment from seed, persistence once established, forage yield and ease of seed production. Accessions sown at a site were determined by prior experience with them on a range of soils. High quality seed was relatively easy to produce for both Urochloa species and for Eragrostis curvula CPI 30374 but problematic for the Bothriochloa spp. Once established, all accessions persisted for 3–5 years and most were well grazed, but adequate establishment was sometimes a problem with Panicum stapfianum and Bothriochloa ewartiana. The dry matter yield ratings of the non-commercial lines were similar to those of the commercial equivalents of the same species. While agronomically valuable, none of the promising new grasses was considered worthy of commercialization at this point because their strengths did not warrant the setting up of a seed-production business in competition with current commercial enterprises. Long-standing cultivars such as Gayndah buffel and Nixon sabi grass continued to exhibit their superior pasture qualities.