2 resultados para Marchantia polymorpha
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Fifteen years ago subterranean clover (Trifolium subterraneum) and annual medics (Medicago spp.) dominated annual pasture legume sowings in southern Australia, while limited pasture legume options existed for cropping areas of subtropical Australia. Since then a number of sustainability and economic challenges to existing farming systems have emerged, exposing shortcomings in these species and the lack of legume biodiversity. Public breeding institutions have responded to these challenges by developing 58 new annual and short-lived perennial pasture legumes with adaptation to both existing and new farming systems. This has involved commercialisation of new species and overcoming deficiencies in traditional species. Traits incorporated in legumes of Mediterranean Basin origin for the Mediterranean, temperate and southern subtropical climates of Australia include deeper root systems, protection from false breaks (germination-inducing rainfall events followed by death from drought), a range of hardseed levels, acid-soil tolerant root nodule symbioses, tolerance to pests and diseases and provision of lower cost seed through ease of seed harvesting and processing. Ten new species, French serradella (Ornithopus sativus), biserrula (Biserrula pelecinus), sulla (Hedysarum coronarium), gland (Trifolium glanduliferum), arrowleaf (Trifolium vesiculosum), eastern star (Trifolium dasyurum) and crimson (Trifolium incarnatum) clovers and sphere (Medicago sphaerocarpos), button (Medicago orbicularis) and hybrid disc (Medicago tornata x Medicago littoralis) medics have been commercialised. Improved cultivars have also been developed of subterranean (T. subterraneum), balansa (Trifolium michelianum), rose (Trifolium hirtum), Persian (Trifolium resupinatum) and purple (Trifolium purpureum) clovers, burr (Medicago polymorpha), strand (M. littoralis), snail (Medicago scutellata) and barrel (Medicago truncatula) medics and yellow serradella (Ornithopus compressus). New tropical legumes for pasture phases in subtropical cropping areas include butterfly pea (Clitoria ternatea), burgundy bean (Macroptilium bracteatum) and perennial lablab (Lablab purpureus). Other species and cultivars of Mediterranean species are likely to be released soon. The contributions of genetic resources, rhizobiology, pasture ecology and agronomy, plant pathology, entomology, plant chemistry and animal science have been paramount to this success. A farmer survey in Western Australia has shown widespread adoption of the new pasture legumes, while adoption of new tropical legumes has also been high in cropping areas of the subtropics. This trend is likely to increase due to the increasing cost of inorganic nitrogen, the need to combat herbicide-resistant crop weeds and improved livestock prices. Mixtures of these legumes allows for more robust pastures buffered against variable seasons, soils, pests, diseases and management decisions. This paper discusses development of the new pasture legumes, their potential use and deficiencies in the current suite. 'Ground–breaking Stuff’- Proceedings of the 13th Australian Society of Agronomy Conference, 10-14 September 2006, Perth, Western Australia.
Resumo:
Accurate identification of viruses is critical for resistance breeding and for development of management strategies. To this end, we are developing PCR diagnostics for the luteoviruses / poleroviruses that commonly affect chickpea and pulse crops in Australia. This is helping to overcome the shortfalls in virus identifications that often result from cross reactions of viruses to some antibodies. We compared these PCR tests with antibody based Tissue blot immune-assay (TBIA) in virus surveys of chickpea and pulse crops from eastern Australia. We used a multiplex PCR for Beet western yellows virus (BWYV), Bean leaf roll virus (BLRV), Phasey bean virus (PhBV – a new polerovirus species) and Soybean dwarf virus (SbDV) to investigate the importance of each virus and their host range from different locations. Important alternative hosts included Malva parviflora which was commonly found to be infected with BWYV from many locations and Medicago polymorpha was a host for BLRV, PhBV and SbDV. Using the virus species-specific PCR, 49 virus affected plants (mostly crop plants) from surveys in 2013 were screened, revealing the following infections; 38 SbDV, 5 PhBV, 3 BWYV, 2 BLRV and 1 mixed SbDV/BWYV. From the 45 samples that were not BWYV by PCR, 33 were false-positives in the BWYV TBIA. This demonstrates the BWYV antibody used was not useful for identifying BWYV and PCR indicated that SbDV was the dominant virus from the samples tested from the 2013 season. Preliminary results from the 2014 season indicate a significant change, with SbDV being only a minor component of the total virus population. Further work to clarify the Australian luteovirus complex through molecular techniques is in progress.