3 resultados para Mapping And Monitoring

em eResearch Archive - Queensland Department of Agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of molecular markers for genomic studies in Mangifera indica (mango) will allow marker-assisted selection and identification of genetically diverse germplasm, greatly aiding mango breeding programs. We report here our identification of thousands of unambiguous molecular markers that can be easily assayed across genotypes of the species. With origin centered in Southeast Asia, mangos are grown throughout the tropics and subtropics as a nutritious fruit that exhibits remarkable intraspecific phenotypic diversity. With the goal of building a high density genetic map, we have undertaken discovery of sequence variation in expressed genes across a broad range of mango cultivars. A transcriptome sequence reference was built de novo from extensive sequencing and assembly of RNA from cultivar 'Tommy Atkins'. Single nucleotide polymorphisms (SNPs) in protein coding transcripts were determined from alignment of RNA reads from 24 mango cultivars of diverse origins: 'Amin Abrahimpur' (India), 'Aroemanis' (Indonesia), 'Burma' (Burma), 'CAC' (Hawaii), 'Duncan' (Florida), 'Edward' (Florida), 'Everbearing' (Florida), 'Gary' (Florida), 'Hodson' (Florida), 'Itamaraca' (Brazil), 'Jakarata' (Florida), 'Long' (Jamaica), 'M. Casturi Purple' (Borneo), 'Malindi' (Kenya), 'Mulgoba' (India), 'Neelum' (India), 'Peach' (unknown), 'Prieto' (Cuba), 'Sandersha' (India), 'Tete Nene' (Puerto Rico), 'Thai Everbearing' (Thailand), 'Toledo' (Cuba), 'Tommy Atkins' (Florida) and 'Turpentine' (West Indies). SNPs in a selected subset of protein coding transcripts are currently being converted into Fluidigm assays for genotyping of mapping populations and germplasm collections. Using an alternate approach, SNPs (144) discovered by sequencing of candidate genes in 'Kensington Pride' have already been converted and used for genotyping.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Efficient crop monitoring and pest damage assessments are key to protecting the Australian agricultural industry and ensuring its leading position internationally. An important element in pest detection is gathering reliable crop data frequently and integrating analysis tools for decision making. Unmanned aerial systems are emerging as a cost-effective solution to a number of precision agriculture challenges. An important advantage of this technology is it provides a non-invasive aerial sensor platform to accurately monitor broad acre crops. In this presentation, we will give an overview on how unmanned aerial systems and machine learning can be combined to address crop protection challenges. A recent 2015 study on insect damage in sorghum will illustrate the effectiveness of this methodology. A UAV platform equipped with a high-resolution camera was deployed to autonomously perform a flight pattern over the target area. We describe the image processing pipeline implemented to create a georeferenced orthoimage and visualize the spatial distribution of the damage. An image analysis tool has been developed to minimize human input requirements. The computer program is based on a machine learning algorithm that automatically creates a meaningful partition of the image into clusters. Results show the algorithm delivers decision boundaries that accurately classify the field into crop health levels. The methodology presented in this paper represents a venue for further research towards automated crop protection assessments in the cotton industry, with applications in detecting, quantifying and monitoring the presence of mealybugs, mites and aphid pests.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bactrocera tryoni (Froggatt) is Australia's major horticultural insect pest, yet monitoring females remains logistically difficult. We trialled the ‘Ladd trap’ as a potential female surveillance or monitoring tool. This trap design is used to trap and monitor fruit flies in countries other (e.g. USA) than Australia. The Ladd trap consists of a flat yellow panel (a traditional ‘sticky trap’), with a three dimensional red sphere (= a fruit mimic) attached in the middle. We confirmed, in field-cage trials, that the combination of yellow panel and red sphere was more attractive to B. tryoni than the two components in isolation. In a second set of field-cage trials, we showed that it was the red-yellow contrast, rather than the three dimensional effect, which was responsible for the trap's effectiveness, with B. tryoni equally attracted to a Ladd trap as to a two-dimensional yellow panel with a circular red centre. The sex ratio of catches was approximately even in the field-cage trials. In field trials, we tested the traditional red-sphere Ladd trap against traps for which the sphere was painted blue, black or yellow. The colour of sphere did not significantly influence trap efficiency in these trials, despite the fact the yellow-panel/yellow-sphere presented no colour contrast to the flies. In 6 weeks of field trials, over 1500 flies were caught, almost exactly two-thirds of them being females. Overall, flies were more likely to be caught on the yellow panel than the sphere; but, for the commercial Ladd trap, proportionally more females were caught on the red sphere versus the yellow panel than would be predicted based on relative surface area of each component, a result also seen the field-cage trial. We determined that no modification of the trap was more effective than the commercially available Ladd trap and so consider that product suitable for more extensive field testing as a B. tryoni research and monitoring tool.