3 resultados para Mangrove snapper

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Snapper (Pagrus auratus) is widely distributed throughout subtropical and temperate southern oceans and forms a significant recreational and commercial fishery in Queensland, Australia. Using data from government reports, media sources, popular publications and a government fisheries survey carried out in 1910, we compiled information on individual snapper fishing trips that took place prior to the commencement of fisherywide organized data collection, from 1871 to 1939. In addition to extracting all available quantitative data, we translated qualitative information into bounded estimates and used multiple imputation to handle missing values, forming 287 records for which catch rate (snapper fisher−1 h−1) could be derived. Uncertainty was handled through a parametric maximum likelihood framework (a transformed trivariate Gaussian), which facilitated statistical comparisons between data sources. No statistically significant differences in catch rates were found among media sources and the government fisheries survey. Catch rates remained stable throughout the time series, averaging 3.75 snapper fisher−1 h−1 (95% confidence interval, 3.42–4.09) as the fishery expanded into new grounds. In comparison, a contemporary (1993–2002) south-east Queensland charter fishery produced an average catch rate of 0.4 snapper fisher−1 h−1 (95% confidence interval, 0.31–0.58). These data illustrate the productivity of a fishery during its earliest years of development and represent the earliest catch rate data globally for this species. By adopting a formalized approach to address issues common to many historical records – missing data, a lack of quantitative information and reporting bias – our analysis demonstrates the potential for historical narratives to contribute to contemporary fisheries management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gulf of Carpentaria Finfish Trawl Fishery operates under developmental permits and harvests five main tropical snapper species. The fishery operates in eastern Gulf of Carpentaria waters and is managed by Fisheries Queensland on behalf of the Queensland Fishery Joint Authority. For the years 2004–2014, the fishery Total Allowable Commercial Catch (TACC) was fixed at 1250 t and substantially under-filled. In 2011 new stock analyses were published for the fishery. Results were presented to industry including the estimated equilibrium maximum sustainable yield (MSY) of 450 t for east Gulf of Carpentaria waters. The MSY value represented the maximum average combined species harvest that can be taken long-term; combining MSY harvests of the five main species. For the 2015 calendar year, a revised 450 t harvest quota was set for Crimson Snapper, Saddletail Snapper, Red Emperor and other Emperor species; plus a tonnage allowance for other permitted species. The revised quota tonnage represented a considerable reduction from the 1250 t set in previous years. Industry raised questions about not understanding how the MSY was arrived at and why it was less than early 1990s yield estimates. The purpose of this report is to explain the MSY estimates for east Gulf of Carpentaria waters. The 450 t MSY represents at present the best estimate available and is consistent with pre-2011 estimates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thirty-four microsatellite loci were isolated from three reef fish species; golden snapper Lutjanus johnii, blackspotted croaker Protonibea diacanthus and grass emperor Lethrinus laticaudis using a next generation sequencing approach. Both IonTorrent single reads and Illumina MiSeq paired-end reads were used, with the latter demonstrating a higher quality of reads than the IonTorrent. From the 1–1.5 million raw reads per species, we successfully obtained 10–13 polymorphic loci for each species, which satisfied stringent design criteria. We developed multiplex panels for the amplification of the golden snapper and the blackspotted croaker loci, as well as post-amplification pooling panels for the grass emperor loci. The microsatellites characterized in this work were tested across three locations of northern Australia. The microsatellites we developed can detect population differentiation across northern Australia and may be used for genetic structure studies and stock identification.