6 resultados para Malária. Resistência. Atividade antimalárica. Clethra scabra Pers.. Boerhavia paniculata Rich
em eResearch Archive - Queensland Department of Agriculture
Resumo:
To quantify the role of Johnson grass, Sorghum halepense, in the population dynamics of the sorghum midge, Stenodiplosis sorghicola, patterns of flowering of Johnson grass and infestation by sorghum midge were studied in two different climatic environments in the Lockyer Valley and on the Darling Downs in south-eastern Queensland for 3 years. Parasitism levels of S. sorghicola were also recorded. In the Lockyer Valley, Johnson grass panicles were produced throughout the year but on the Darling Downs none were produced between June and September. In both areas, most panicle production occurred between November and March and infestation by S. sorghicola was the greatest during this period. The parasitism levels were between 20% and 50%. After emergence from winter diapause, one to two generations of S. sorghicola developed on S. halepense before commercial grain sorghum crops were available for infestation. Parasitoids recorded were: Aprostocetus diplosidis, Eupelmus australiensis and two species of Tetrastichus. Relationships between sorghum midge population growth rate and various environmental and population variables were investigated. Population size had a significant negative effect (P < 0.0001) on population growth rate. Mortality due to parasitism showed a significant positive density response (P < 0.0001). Temperature, rainfall, open pan evaporation, degree-days and host availability showed no significant effect on population growth rate. Given the phenology of sorghum production in south-eastern Queensland, Johnson grass provides an important bridging host, sustaining one to two generations of sorghum midge. Critical studies relating population change and build-up in sorghum to sorghum midge populations in Johnson grass are yet to be performed.
Resumo:
The dynamics of Heteropogon contortus and Stylosanthes scabra cv. Seca populations were studied in a subset of treatments in an extensive grazing study conducted in central Queensland between 1988 and 2001. These treatments were 4 stocking rates in native pasture and 2 of these stocking rates in legume oversown and supplement/spring burning treatments. For the 1999-2000 summer, population data for H. contortus in 5 of these native pasture and supplement/burning treatments were compared with those for an additional burnt treatment. Seasonal rainfall throughout this study was below the long-term mean and mean annual pasture utilisation ranged from 24 to 61%. Increasing stocking rate from 5 to 2 ha/steer in native pasture reduced H. contortus plant density. Increasing stocking rate reduced seedling recruitment as a result of its effect on soil seedbanks. Seedling recruitment was the major determinant of change in plant density, although some individual H. contortus plants did survive throughout the study. Burning in spring 1999, particularly at light stocking rate, promoted seedling recruitment above that in both unburnt native and legume oversown pasture and resulted in increased H. contortus plant density. In the legume oversown treatments, S. scabra cv. Seca density increased rapidly from 15 plants/m2 in 1988 to 140 plants/m2 in 2001 following a lag phase between 1988 and 1993. This increased S. scabra density was associated with an eventual decline in H. contortus plant density through reduced seedling recruitment. It was concluded that H. contortus population density is sustainable at stocking rates of 4 and 5 ha/steer (30% pasture utilisation) and that spring burning at light stocking rate can promote H. contortus populations. Increasing densities of S. scabra need to be managed to prevent its dominance.
Resumo:
Salinity is an increasingly important issue in both rural and urban areas throughout much of Australia. The use of recycled/reclaimed water and other sources of poorer quality water to irrigate turf is also increasing. Hybrid Bermudagrass (Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt Davey), together with the parent species C. dactylon, are amongst the most widely used warm-season turf grass groups. Twelve hybrid Bermudagrass genotypes and one accession each of Bermudagrass (C. dactylon), African Bermudagrass (C. transvaalensis) and seashore paspalum (Paspalum vaginatum Sw.) were grown in a glasshouse experiment with six different salinity treatments applied hydroponically through the irrigation water (ECW = <0.1, 6, 12, 18, 24 or 30 dSm-1) in a flood-and-drain system. Each pot was clipped progressively at 2-weekly intervals over the 12-week experimental period to determine dry matter production; leaf firing was rated visually on 3 occasions during the last 6 weeks of salinity treatment. At the end of the experiment, dry weights of roots and crowns below clipping height were also determined. Clipping yields declined sharply after about the first 6 weeks of salinity treatment, but then remained stable at substantially lower levels of dry matter production from weeks 8 to 12. Growth data over this final 4-week experimental period is therefore a more accurate guide to the relative salinity tolerance of the 15 entries than data from the preceding 8 weeks. Based on these data, the 12 hybrid Bermudagrass genotypes showed moderate salinity tolerance, with FloraDwarfM, 'Champion Dwarf', NovotekM and 'TifEagle' ranking as the most salt tolerant and 'Patriot', 'Santa Ana', 'Tifgreen' and TifSport M the least tolerant within the hybrid group. Nevertheless, Santa Ana, for example, maintained relatively strong root growth as salinity increased, and so may show better salt tolerance in practice than predicted from the growth data alone. The 12 hybrid Bermudagrasses and the single African Bermudagrass genotype were all ranked above FloraTeXM Bermudagrass in terms of salt tolerance. However, seashore paspalum, which is widely acknowledged as a halophytic species showing high salt tolerance, ranked well above all 14 Cynodon genotypes in terms of salinity tolerance.
Resumo:
Wear resistance and recovery of 8 Bermudagrass (Cynodon dactylon (L.) Pers.) and hybrid Bermudagrass (C. Dactylon x C. transvaalensis Burtt-Davey) cultivars grown on a sandbased soil profile near Brisbane, Australia, were assessed in 4 wear trials conducted over a two year period. Wear was applied on a 7-day or a 14-day schedule by a modified Brinkman Traffic Simulator for 6-14 weeks at a time, either during winter-early spring or during summer-early autumn. The more frequent wear under the 7-day treatment was more damaging to the turf than the 14-day wear treatment, particularly during winter when its capacity for recovery from wear was severely restricted. There were substantial differences in wear tolerance among the 8 cultivars investigated, and the wear tolerance rankings of some cultivars changed between years. Wear tolerance was associated with high shoot density, a dense stolon mat strongly rooted to the ground surface, high cell wall strength as indicated by high total cell wall content, and high levels of lignin and neutral detergent fiber. Wear tolerance was also affected by turf age, planting sod quality, and wet weather. Resistance to wear and recovery from wear are both important components of wear tolerance, but the relative importance of their contributions to overall wear tolerance varies seasonally with turf growth rate.
Resumo:
Fine-textured hybrid bermudagrass [Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy] cultivars have been widely used for golf putting greens and lawn bowls greens in warm-climate areas for more than 40 years. During the past decade, the choice of cultivar for professional turfgrass managers has been expanded by a range of secondgeneration hybrid bermudagrasses, which differ from the first-generation cultivars ‘Tifgreen’ and ‘Tifdwarf ’ in their management requirements. In this paper, we present comparative morphological and developmental data for seven cultivars (Champion Dwarf, FloraDwarf, MS-Supreme, Novotek, Tifdwarf, TifEagle, Tifgreen) grown in spaced plant and sward experiments at Cleveland, Australia (27º32’S lat, 153º15’E long, 25 masl). The four ‘ultradwarf ’ cultivars (Champion Dwarf, MS-Supreme, FloraDwarf, TifEagle) showed slower vertical extension and produced fewer inflorescences than Tifdwarf, Tifgreen, and Novotek. However, in terms of the length of stolon internodes and their overall rate of lateral spread, Champion Dwarf, FloraDwarf, and TifEagle were comparable to Tifdwarf; MS-Supreme (with longer internodes) spread faster laterally, though slower than Tifgreen (which had the longest stolon internodes). In unmown swards, the four ultradwarfs produced shorter leaves than Tifgreen, Tifdwarf, and Novotek, but only Champion Dwarf produced significantly narrower leaves than Tifgreen, Tifdwarf, and Novotek, with TifEagle leaves also significantly narrower than those of Tifgreen and Novotek. Minimum threshold temperatures for growth were approximately 9° to 10°C (air temperature) and 15° to 16°C at 10 cm soil depth.
Resumo:
The impacts of 4 grazing strategies (year-long grazing, summer grazing, winter grazing and winter grazing plus spring burning) on the grass:legume balance were studied between 2000 and 2006 in a pasture oversown with Stylosanthes scabra cv. Seca (Seca stylo) in central Queensland. Seasonal rainfall throughout the study was generally below average. Total pasture yields in autumn were higher in the 2 winter grazing than the 2 summer grazing treatments, largely reflecting the sampling time relative to when grazing occurred. There were few differences in Seca composition in autumn, although there was a clear trend for Seca composition to be reduced by winter grazing plus burning. Both the frequency of occurrence and plant density of Seca were higher under the 2 summer grazing treatments and there was also a trend for the density of juvenile plants (<5 cm height) to be higher in the 2 summer grazing treatments. Seca soil seed banks were generally low and were reduced in the winter grazing plus burning treatment in spring 2002. The frequency of the palatable perennial grass Pennisetum ciliaris (Biloela buffel grass) was reduced while that of the 'increaser' species Bothriochloa pertusa (Indian couch grass) and Stachytarpheta jamaicensis (snake weed) increased in the 2 summer grazing treatments compared with the 2 winter grazing treatments. Burning in spring increased soil loss in treatments grazed in winter. Differences in Seca frequency and density but not composition were explained by the 2 summer grazing treatments promoting 'gaps' in the pasture which were then colonised by Seca plants and other 'increaser' species. It was reasoned that, with time, mature Seca plants in the 2 winter grazing treatments would die so that Seca composition would eventually become higher under summer grazing regimes than under winter grazing. It was concluded that limiting grazing to particular seasons can alter legume:grass balance and that a time-frame of 5-8 years with average to good rainfall would be necessary to achieve large shifts in composition.