10 resultados para MIXED DISCRETE
em eResearch Archive - Queensland Department of Agriculture
Resumo:
This study investigated whether mixed-species designs can increase the growth of a tropical eucalypt when compared to monocultures. Monocultures of Eucalyptus pellita (E) and Acacia peregrina (A) and mixtures in various proportions (75E:25A, 50E:50A, 25E:75A) were planted in a replacement series design on the Atherton Tablelands of north Queensland, Australia. High mortality in the establishment phase due to repeated damage by tropical cyclones altered the trial design. Effects of experimental designs on tree growth were estimated using a linear mixed-effects model with restricted maximum likelihood analysis (REML). Volume growth of individual eucalypt trees were positively affected by the presence of acacia trees at age 5 years and this effect generally increased with time up to age 10 years. However, the stand volume and basal area increased with increasing proportions of E. pellita, due to its larger individual tree size. Conventional analysis did not offer convincing support for mixed-species designs. Preliminary individual-based modelling using a modified Hegyi competition index offered a solution and an equation that indicates acacias have positive ecological interactions (facilitation or competitive reduction) and definitely do not cause competition like a eucalypt. These results suggest that significantly increased in growth rates could be achieved with mixed-species designs. This statistical methodology could enable a better understanding of species interactions in similarly altered experiments, or undesigned mixed-species plantations.
Resumo:
Blackwood (Acacia melanoxylon R. Br.) is a valuable leguminous cabinetwood species which is commonly found as a canopy or subcanopy tree in a broad range of mixed-species moist forests on tablelands and coastal escarpments in eastern Australia. This paper reports on the competitive light environment of a commercially valuable multi-species regrowth forest in NW Tasmania, in order to define some of the functional interactions and competitive dynamics of these stands. Comparative observations were made of the internal forest light environment in response to small-gap silvicultural treatments, in a young regenerative mix of three codominant tree species. Light measurements were made during periods of maximum external irradiance of the regrowth Eucalyptus obliqua/A. melanoxylon forest canopy at age 10.5 years. This was at a time of vigourous stand development, 4.5 years following the application of three experimental silvicultural treatments whose effects were observed in comparison with an untreated canopy sample designed as a control. Minimal irradiance was observed within and beneath the dense subcanopy of the native nurse species (Pomaderris apetala) which closely surrounds young blackwood regeneration. Unlike current plantation nurse systems, the dense foliage of the native broadleaved Pomaderris all but eliminated direct side-light and low-angle illumination of the young blackwood, from the beginning of tree establishment. The results demonstrated that retention of these densely stocked native codominants effectively suppressed both size and frequency of blackwood branches on the lower bole, through effective and persistent interception of sunlight. Vigorous young blackwood crowns later overtopped the codominant nurse species, achieving a predictable height of branch-free bole. This competitive outcome offers a valuable tool for management of blackwood crown dynamics, stem form and branch habit through manipulation of light environment in young native regrowth systems. Results demonstrate that effective self-pruning in the lower bole of blackwood is achieved through a marked reduction in direct and diffuse sunlight incident on the lower crown, notably to less than 10-15% of full sunlight intensity during conditions of maximum insolation. The results also contain insights for the improved design of mixed-species plantation nurse systems using these or functionally similar species' combinations. Based on evidence presented here for native regrowth forest, plantation nurse systems for blackwood will need to achieve 85-90% interception of external side-light during early years of tree development if self-pruning is to emulate the results achieved in the native nurse system.
Resumo:
Reduced supplies of nitrogen (N) in many soils of southern Queensland that were cropped exhaustively with cereals over many decades have been the focus of much research to avoid declines in profitability and sustainability of farming systems. A 45-month period of mixed grass (purple pigeon grass, Setaria incrassata Stapf; Rhodes grass, Chloris gayana Kunth.) and legume (lucerne, Medicago sativa L.; annual medics, M. scutellata L. Mill. and M. truncatula Gaertn.) pasture was one of several options that were compared at a fertility-depleted Vertosol at Warra, southern Queensland, to improve grain yields or increase grain protein concentration of subsequent wheat crops. Objectives of the study were to measure the productivity of a mixed grass and legume pasture grown over 45 months (cut and removed over 36 months) and its effects on yield and protein concentrations of the following wheat crops. Pasture production (DM t/ha) and aboveground plant N yield (kg/ha) for grass, legume (including a small amount of weeds) and total components of pasture responded linearly to total rainfall over the duration of each of 3 pastures sown in 1986, 1987 and 1988. Averaged over the 3 pastures, each 100 mm of rainfall resulted in 0.52 t/ha of grass, 0.44 t/ha of legume and 0.97 t/ha of total pasture DM, there being little variation between the 3 pastures. Aboveground plant N yield of the 3 pastures ranged from 17.2 to 20.5 kg/ha per 100 mm rainfall. Aboveground legume N in response to total rainfall was similar (10.6 - 13.2 kg/ha. 100 mm rainfall) across the 3 pastures in spite of very different populations of legumes and grasses at establishment. Aboveground grass N yield was 5.2 - 7.0 kg/ha per 100mm rainfall. In most wheat crops following pasture, wheat yields were similar to that of unfertilised wheat except in 1990 and 1994, when grain yields were significantly higher but similar to that for continuous wheat fertilised with 75 kg N/ha. In contrast, grain protein concentrations of most wheat crops following pasture responded positively, being substantially higher than unfertilised wheat but similar to that of wheat fertilised with 75 kg N/ha. Grain protein averaged over all years of assay was increased by 25 - 40% compared with that of unfertilised wheat. Stored water supplies after pasture were < 134mm (< 55% of plant available water capacity); for most assay crops water storages were 67 - 110 mm, an equivalent wet soil depth of only 0.3 - 0.45 m. Thus, the crop assays of pasture benefits were limited by low water supply to wheat crops. Moreover, the severity of common root rot in wheat crop was not reduced by pasture - wheat rotation.
Resumo:
Genetic models partitioning additive and non-additive genetic effects for populations tested in replicated multi-environment trials (METs) in a plant breeding program have recently been presented in the literature. For these data, the variance model involves the direct product of a large numerator relationship matrix A, and a complex structure for the genotype by environment interaction effects, generally of a factor analytic (FA) form. With MET data, we expect a high correlation in genotype rankings between environments, leading to non-positive definite covariance matrices. Estimation methods for reduced rank models have been derived for the FA formulation with independent genotypes, and we employ these estimation methods for the more complex case involving the numerator relationship matrix. We examine the performance of differing genetic models for MET data with an embedded pedigree structure, and consider the magnitude of the non-additive variance. The capacity of existing software packages to fit these complex models is largely due to the use of the sparse matrix methodology and the average information algorithm. Here, we present an extension to the standard formulation necessary for estimation with a factor analytic structure across multiple environments.
Resumo:
A workshop held in Ballina (NSW, Australia) during 5–7 August 2005 in association with the XXII IUFRO World Congress, sought to quantify the potential of mixtures to sustain and enhance the growth and productivity, soil fertility, tree and stand health, wood quality, and economics of polyculture plantations. Participants were specifically asked to address whether demonstrable productivity gains in mixed-species plantations, compared with monoculture plantations, could make mixtures a commercially attractive option. We specifically sought to attract presentations addressing the operational challenges of making mixed-species plantations practical and successful, and attracted representatives from several industrial plantation agencies.
Resumo:
To experimentally investigate the potential of mixed species polycultures for bioremediation of nutrient rich prawn farm effluent, a series of experiments was performed with banana prawns Penaeus (Fenneropenaeus) merguiensis, sea mullet Mugil cephalus and rabbitfish Siganus nebulosus to determine their compatibilities during particular life stages. Rabbitfish demonstrated a high tendency to prey upon banana prawn juveniles when no other food was available. Mullet of various sizes did not appear to prey upon banana prawn postlarvae (PL16) or juveniles in a fed or unfed environment. The study confirms the good potential for mullet and banana prawn polycultures.
Resumo:
The project uses participatory methods to engage primary producers and advisers in central Queensland, southern Queensland, and north east New South Wales on-farm trials and demonstrations to adapt mixed farming systems to changed climate conditions. The focus is adaptation to climate change but will support abatement of greenhouse gas emissions by building soil carbon, better managing soil nitrogen and soil organic carbon. Data will be collected and integrated with data from Round 1 of the Climate Change Research Program to extend industry understanding beyond a general awareness of ‘climate change’. Nitrous oxide and soil carbon data will help farmers/advisers understand the implications of climate change and develop adaptation strategies for a more sustainable, climate sensitive future.
Resumo:
Mixed species plantations using native trees are increasingly being considered for sustainable timber production. Successful application of mixed species forestry systems requires knowledge of the potential spatial interaction between species in order to minimise the chance of dominance and suppression and to maximise wood production. Here, we examined species performances across 52 experimental plots of tree mixtures established on cleared rainforest land to analyse relationships between the growth of component species and climate and soil conditions. We derived site index (SI) equations for ten priority species to evaluate performance and site preferences. Variation in SI of focus species demonstrated that there are strong species-specific responses to climate and soil variables. The best predictor of tree growth for rainforest species Elaeocarpus grandis and Flindersia brayleyana was soil type, as trees grew significantly better on well-draining than on poorly drained soil profiles. Both E. grandis and Eucalyptus pellita showed strong growth response to variation in mean rain days per month. Our study generates understanding of the relative performance of species in mixed species plantations in the Wet Tropics of Australia and improves our ability to predict species growth compatibilities at potential planting sites within the region. Given appropriate species selections and plantation design, mixed plantations of high-value native timber species are capable of sustaining relatively high productivity at a range of sites up to age 10 years, and may offer a feasible approach for large-scale reforestation.
Resumo:
Mango is an important horticultural fruit crop and breeding is a key strategy to improve ongoing sustainability. Knowledge of breeding values of potential parents is important for maximising progress from breeding. This study successfully employed a mixed linear model methods incorporating a pedigree to predict breeding values for average fruit weight from highly unbalanced data for genotypes planted over three field trials and assessed over several harvest seasons. Average fruit weight was found to be under strong additive genetic control. There was high correlation between hybrids propagated as seedlings and hybrids propagated as scions grafted onto rootstocks. Estimates of additive genetic correlation among trials ranged from 0.69 to 0.88 with correlations among harvest seasons within trials greater than 0.96. These results suggest that progress from selection for broad adaptation can be achieved, particularly as no repeatable environmental factor that could be used to predict G x E could be identified. Predicted breeding values for 35 known cultivars are presented for use in ongoing breeding programs.
Resumo:
To quantify the impact that planting indigenous trees and shrubs in mixed communities (environmental plantings) have on net sequestration of carbon and other environmental or commercial benefits, precise and non-biased estimates of biomass are required. Because these plantings consist of several species, estimation of their biomass through allometric relationships is a challenging task. We explored methods to accurately estimate biomass through harvesting 3139 trees and shrubs from 22 plantings, and collating similar datasets from earlier studies, in non-arid (>300mm rainfallyear-1) regions of southern and eastern Australia. Site-and-species specific allometric equations were developed, as were three types of generalised, multi-site, allometric equations based on categories of species and growth-habits: (i) species-specific, (ii) genus and growth-habit, and (iii) universal growth-habit irrespective of genus. Biomass was measured at plot level at eight contrasting sites to test the accuracy of prediction of tonnes dry matter of above-ground biomass per hectare using different classes of allometric equations. A finer-scale analysis tested performance of these at an individual-tree level across a wider range of sites. Although the percentage error in prediction could be high at a given site (up to 45%), it was relatively low (<11%) when generalised allometry-predictions of biomass was used to make regional- or estate-level estimates across a range of sites. Precision, and thus accuracy, increased slightly with the level of specificity of allometry. Inclusion of site-specific factors in generic equations increased efficiency of prediction of above-ground biomass by as much as 8%. Site-and-species-specific equations are the most accurate for site-based predictions. Generic allometric equations developed here, particularly the generic species-specific equations, can be confidently applied to provide regional- or estate-level estimates of above-ground biomass and carbon. © 2013 Elsevier B.V.