3 resultados para MICROBIOTA
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Alimentary carbohydrate overload is a significant cause of laminitis in horses and is correlated with drastic shifts in the composition of hindgut microbiota. Equine hindgut streptococcal species (EHSS), predominantly Streptococcus lutetiensis, have been shown to be the most common microorganisms culturable from the equine caecum prior to the onset of laminitis. However, the inherent biases of culture-based methods are estimated to preclude up to 70% of the normal caecal microbiota. The objective of this study was to evaluate bacterial population shifts occurring in the equine caecum throughout the course of oligofructose-induced laminitis using several culture-independent techniques and to correlate these with caecal lactate, volatile fatty acid and degrees of polymerization 3-7 fructo-oligosaccharide concentrations. Our data conclusively show that of the total microbiota present in the equine hindgut, the EHSS S. lutetiensis is the predominant microorganism that proliferates prior to the onset of laminitis, utilizing oligofructose to produce large quantities of lactate. Population shifts in lactobacilli and Escherichia coli subpopulations occur secondarily to the EHSS population shifts, thus confirming that lactobacilli and coliforms have no role in laminitis. A large, curved, Gram-negative rod previously observed during the early phases of laminitis induction was most closely related to the Anaerovibrio genus and most likely represents a new, yet to be cultured, genus and species. Correlation of fluorescence in situ hybridization and quantitative real-time PCR results provide evidence supporting the hypothesis that laminitis is associated with the death en masse and rapid cell lysis of EHSS. If EHSS are lysed, liberated cellular components may initiate laminitis.
Resumo:
The Florida manatee, Trichechus manatus latirostris, is a hindgut-fermenting herbivore. In winter, manatees migrate to warm water overwintering sites where they undergo dietary shifts and may suffer from cold-induced stress. Given these seasonally induced changes in diet, the present study aimed to examine variation in the hindgut bacterial communities of wild manatees overwintering at Crystal River, west Florida. Faeces were sampled from 36 manatees of known sex and body size in early winter when manatees were newly arrived and then in mid-winter and late winter when diet had probably changed and environmental stress may have increased. Concentrations of faecal cortisol metabolite, an indicator of a stress response, were measured by enzyme immunoassay. Using 454-pyrosequencing, 2027 bacterial operational taxonomic units were identified in manatee faeces following amplicon pyrosequencing of the 16S rRNA gene V3/V4 region. Classified sequences were assigned to eight previously described bacterial phyla; only 0.36% of sequences could not be classified to phylum level. Five core phyla were identified in all samples. The majority (96.8%) of sequences were classified as Firmicutes (77.3 ± 11.1% of total sequences) or Bacteroidetes (19.5 ± 10.6%). Alpha-diversity measures trended towards higher diversity of hindgut microbiota in manatees in mid-winter compared to early and late winter. Beta-diversity measures, analysed through permanova, also indicated significant differences in bacterial communities based on the season.
Resumo:
Indospicine toxicosis was reported in sheep, goats and cattle fed on Indigofera, a leguminous plant rich in indospicine. Recent death report on dogs as a result of dietary ingestion of indospicine contaminated camel meat has raised concern about the distribution of this toxin in camels fed on Indigofera. This in vitro study aimed at measuring the degradability of indospicine in Indigofera spicata by camel-foregut fluid and attempted at explaining indospicine accumulation in meat tissue. In the first experiment, in vitro dry matter digestibility and indospicine disappearance were evaluated by using foregut fluid from 15 feral camels. Foregut fluid was collected post mortem from a nearby abattoir. In the second experiment, a composite foregut fluid obtained from three feral camels was used to examine the time-dependent degradation of indospicine. Results indicated that 99 of the dietary indospicine was degraded after 48 h of incubation. The time-dependent degradation study showed rapid degradation (11 µg/h) during the first 18 h of incubation, followed by a much slower rate (2 µg/h) between 18-48 h. Results demonstrated the ability of the camel microbiota to degrade indospicine and suggest the presence of a by-pass mechanism that enables the toxin to escape degradation and reaches the intestine.