1 resultado para MAXENT

em eResearch Archive - Queensland Department of Agriculture


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given the limited resources available for weed management, a strategic approach is required to give the best bang for your buck. The current study incorporates: (1) a model ensemble approach to identify areas of uncertainty and commonality regarding a species invasive potential, (2) current distribution of the invaded species, and (3) connectivity of systems to identify target regions and focus efforts for more effective management. Uncertainty in the prediction of suitable habitat for H. amplexicaulis (study species) in Australia was addressed in an ensemble-forecasting approach to compare distributional scenarios from four models (CLIMATCH; CLIMEX; boosted regression trees [BRT]; maximum entropy [Maxent]). Models were built using subsets of occurrence and environmental data. Catchment risk was determined through incorporating habitat suitability, the current abundance and distribution of H. amplexicaulis, and catchment connectivity. Our results indicate geographic differences between predictions of different approaches. Despite these differences a number of catchments in northern, central, and southern Australia were identified as high risk of invasion or further spread by all models suggesting they should be given priority for the management of H. amplexicaulis. The study also highlighted the utility of ensemble approaches in indentifying areas of uncertainty and commonality regarding the species invasive potential.