9 resultados para MANAGEMENT INDICATORS
em eResearch Archive - Queensland Department of Agriculture
Resumo:
TRFLP (terminal restriction fragment length polymorphism) was used to assess whether management practices that improved disease suppression and/or yield in a 4-year ginger field trial were related to changes in soil microbial community structure. Bacterial and fungal community profiles were defined by presence and abundance of terminal restriction fragments (TRFs), where each TRF represents one or more species. Results indicated inclusion of an organic amendment and minimum tillage increased the relative diversity of dominant fungal populations in a system dependant way. Inclusion of an organic amendment increased bacterial species richness in the pasture treatment. Redundancy analysis showed shifts in microbial community structure associated with different management practices and treatments grouped according to TRF abundance in relation to yield and disease incidence. ANOVA also indicated the abundance of certain TRFs was significantly affected by farming system management practices, and a number of these TRFs were also correlated with yield or disease suppression. Further analyses are required to determine whether identified TRFs can be used as general or soil-type specific bio-indicators of productivity (increased and decreased) and Pythium myriotylum suppressiveness.
Resumo:
Reduced economic circumstances have moved management goals towards higher profit, rather than maximum sustainable yields in several Australian fisheries. The eastern king prawn is one such fishery, for which we have developed new methodology for stock dynamics, calculation of model-based and data-based reference points and management strategy evaluation. The fishery is notable for the northward movement of prawns in eastern Australian waters, from the State jurisdiction of New South Wales to that of Queensland, as they grow to spawning size, so that vessels fishing in the northern deeper waters harvest more large prawns. Bio-economic fishing data were standardized for calibrating a length-structured spatial operating model. Model simulations identified that reduced boat numbers and fishing effort could improve profitability while retaining viable fishing in each jurisdiction. Simulations also identified catch-rate levels that were effective for monitoring in simple within-year effort-control rules. However, favourable performance of catch-rate indicators was achieved only when a meaningful upper limit was placed on total allowed fishing effort. The methods and findings will allow improved measures for monitoring fisheries and inform decision makers on the uncertainty and assumptions affecting economic indicators.
Resumo:
The development of fishery indicators is a crucial undertaking as it ultimately provides evidence to stakeholders about the status of fished species such as population size and survival rates. In Queensland, as in many other parts of the world, age-abundance indicators (e.g. fish catch rate and/or age composition data) are traditionally used as the evidence basis because they provide information on species life history traits as well as on changes in fishing pressures and population sizes. Often, however, the accuracy of the information from age-abundance indicators can be limited due to missing or biased data. Consequently, improved statistical methods are required to enhance the accuracy, precision and decision-support value of age-abundance indicators.
Resumo:
To improve the sustainability and environmental accountability of the banana industry there is a need to develop a set of soil health indicators that integrate physical, chemical and biological soil properties. These indicators would allow banana growers, extension and research workers to improve soil health management practices. To determine changes in soil properties due to the cultivation of bananas, a paired site survey was conducted comparing soil properties under conventional banana systems to less intensively managed vegetation systems, such as pastures and forest. Measurements were made on physical, chemical and biological soil properties at seven locations in tropical and sub-tropical banana producing areas. Soil nematode community composition was used as a bioindicator of the biological properties of the soil. Soils under conventional banana production tended to have a greater soil bulk density, with less soil organic carbon (C) (both total C and labile C), greater exchangeable cations, higher extractable P, greater numbers of plant-parasitic nematodes and less nematode diversity, relative to less intensively managed plant systems. The organic banana production systems at two locations had greater labile C, relative to conventional banana systems, but there was no significant change in nematode community composition. There were significant interactions between physical, chemical and nematode community measurements in the soil, particularly with soil C measurements, confirming the need for a holistic set of indicators to aid soil management. There was no single indicator of soil health for the Australian banana industry, but a set of soil health indicators, which would allow the measurement of soil improvements should include: bulk density, soil C, pH, EC, total N, extractable P, ECEC and soil nematode community structure.
Resumo:
Aim: This study investigated the use of stable δ13C and δ18O isotopes in the sagittal otolith carbonate of narrow-barred Spanish mackerel, Scomberomorus commerson, as indicators of population structure across Australia. Location: Samples were collected from 25 locations extending from the lower west coast of Western Australia (30°), across northern Australian waters, and to the east coast of Australia (18°) covering a coastline length of approximately 9500 km, including samples from Indonesia. Methods: The stable δ13C and δ18O isotopes in the sagittal otolith carbonate of S. commerson were analysed using standard mass spectrometric techniques. The isotope ratios across northern Australian subregions were subjected to an agglomerative hierarchical cluster analysis to define subregions. Isotope ratios within each of the subregions were compared to assess population structure across Australia. Results: Cluster analysis separated samples into four subregions: central Western Australia, north Western Australia, northern Australia and the Gulf of Carpentaria and eastern Australia. Isotope signatures for fish from a number of sampling sites from across Australia and Indonesia were significantly different, indicating population separation. No significant differences were found in otolith isotope ratios between sampling times (no temporal variation). Main conclusions: Significant differences in the isotopic signatures of S. commerson demonstrate that there is unlikely to be any substantial movement of fish among these spatially discrete adult assemblages. The lack of temporal variation among otolith isotope ratios indicates that S. commerson populations do not undergo longshore spatial shifts in distribution during their life history. The temporal persistence of spatially explicit stable isotopic signatures indicates that, at these spatial scales, the population units sampled comprise functionally distinct management units or separate ‘stocks’ for many of the purposes of fisheries management. The spatial subdivision evident among populations of S. commerson across northern and western Australia indicates that it may be advantageous to consider S. commerson population dynamics and fisheries management from a metapopulation perspective (at least at the regional level).
Resumo:
Temporal and spatial patterns in parasite assemblages were examined to evaluate the degree of movement and connectivity of post-recruitment life-history stages of a large, non-diadromous tropical estuarine teleost, king threadfin Polydactylus macrochir, collected from 18 locations across northern Australia. Ten parasites types (juvenile stages of two nematodes and seven cestodes, and adults of an acanthocephalan) were deemed to be suitable for use as biological tags, in that they were considered to have a long residence time in the fish, were relatively easy to find and were morphologically very different to each other which aided discrimination. Univariate and discriminant function analysis of these parasites revealed little difference in temporal replicates collected from five locations, suggesting that the parasite communities were stable over the timeframes explored. Univariate, discriminant function, and BrayCurtis similarity analyses indicated significant spatial heterogeneity, with BrayCurtis classification accuracies ranging from 55 to 100% for locations in north-western and northern Australia, 24 to 88% in the Gulf of Carpentaria, and 39 to 88% on the east coast of Queensland. Few differences were observed among locations separated by <200 km. The observed patterns of parasite infection are in agreement with concurrent studies of movement and connectivity of P. macrochir in that they indicate a complex population structure across northern Australia. These results should be considered when reviewing the management arrangements for this species.
Resumo:
This paper details Australian research that developed tools to assist fisheries managers and government agencies in engaging with the social dimension of industry and community welfare in fisheries management. These tools are in the form of objectives and indicators. These highlight the social dimensions and the effects of management plans and policy implementation on fishing industries and associated communities, while also taking into account the primacy of ecological imperatives. The deployment of these objectives and indicators initially provides a benchmark and, over the life of a management plan, can subsequently be used to identify trends in effects on a variety of social and economic elements that may be objectives in the management of a fishery. It is acknowledged that the degree to which factors can be monitored will be dependent upon resources of management agencies, however these frameworks provide a method for effectively monitoring and measuring change in the social dimension of fisheries management.Essentially, the work discussed in this paper provides fisheries management with the means to both track and begin to understand the effects of government policy and management plans on the social dimension of the fishing industry and its associated communities. Such tools allow the consideration of these elements, within an evidence base, into policy arrangements, and consequently provide an invaluable contribution to the ability to address resilience and sustainability of fishing industries and associated communities.
Resumo:
Objectives: 1. Estimate population parameters required for a management model. These include survival, density, age structure, growth, age and size at maturity and at recruitment to the adult eel fishery. Estimate their variability among individuals in a range of habitats. 2. Develop a management population dynamics model and use it to investigate management options. 3. Establish baseline data and sustainability indicators for long-term monitoring. 4. Assess the applicability of the above techniques to other eel fisheries in Australia, in collaboration with NSW. Distribute developed tools via the Australia and New Zealand Eel Reference Group.
Resumo:
Beef businesses in northern Australia are facing increased pressure to be productive and profitable with challenges such as climate variability and poor financial performance over the past decade. Declining terms of trade, limited recent gains in on-farm productivity, low profit margins under current management systems and current climatic conditions will leave little capacity for businesses to absorb climate change-induced losses. In order to generate a whole-of-business focus towards management change, the Climate Clever Beef project in the Maranoa-Balonne region of Queensland trialled the use of business analysis with beef producers to improve financial literacy, provide a greater understanding of current business performance and initiate changes to current management practices. Demonstration properties were engaged and a systematic approach was used to assess current business performance, evaluate impacts of management changes on the business and to trial practices and promote successful outcomes to the wider industry. Focus was concentrated on improving financial literacy skills, understanding the business’ key performance indicators and modifying practices to improve both business productivity and profitability. To best achieve the desired outcomes, several extension models were employed: the ‘group facilitation/empowerment model’, the ‘individual consultant/mentor model’ and the ‘technology development model’. Providing producers with a whole-of-business approach and using business analysis in conjunction with on-farm trials and various extension methods proved to be a successful way to encourage producers in the region to adopt new practices into their business, in the areas of greatest impact. The areas targeted for development within businesses generally led to improvements in animal performance and grazing land management further improving the prospects for climate resilience.