8 resultados para Low cost technology
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Recent decreases in costs, and improvements in performance, of silicon array detectors open a range of potential applications of relevance to plant physiologists, associated with spectral analysis in the visible and short-wave near infra-red (far-red) spectrum. The performance characteristics of three commercially available ‘miniature’ spectrometers based on silicon array detectors operating in the 650–1050-nm spectral region (MMS1 from Zeiss, S2000 from Ocean Optics, and FICS from Oriel, operated with a Larry detector) were compared with respect to the application of non-invasive prediction of sugar content of fruit using near infra-red spectroscopy (NIRS). The FICS–Larry gave the best wavelength resolution; however, the narrow slit and small pixel size of the charge-coupled device detector resulted in a very low sensitivity, and this instrumentation was not considered further. Wavelength resolution was poor with the MMS1 relative to the S2000 (e.g. full width at half maximum of the 912 nm Hg peak, 13 and 2 nm for the MMS1 and S2000, respectively), but the large pixel height of the array used in the MMS1 gave it sensitivity comparable to the S2000. The signal-to-signal standard error ratio of spectra was greater by an order of magnitude with the MMS1, relative to the S2000, at both near saturation and low light levels. Calibrations were developed using reflectance spectra of filter paper soaked in range of concentrations (0–20% w/v) of sucrose, using a modified partial least squares procedure. Calibrations developed with the MMS1 were superior to those developed using the S2000 (e.g. coefficient of correlation of 0.90 and 0.62, and standard error of cross-validation of 1.9 and 5.4%, respectively), indicating the importance of high signal to noise ratio over wavelength resolution to calibration accuracy. The design of a bench top assembly using the MMS1 for the non-invasive assessment of mesocarp sugar content of (intact) melon fruit is reported in terms of light source and angle between detector and light source, and optimisation of math treatment (derivative condition and smoothing function).
Resumo:
Virus and soil borne pathogens negatively impact on the production of potatoes in tropical highland and sub-tropical environments, limiting supply of an increasingly popular and important vegetable in these regions. It is common for latent disease infected seed tubers or field grown cuttings to be used as potato planting material. We utilised an International Potato Centre technique, using aeroponic technology, to produce low cost mini-tubers in tropical areas. The system has been optimised for increased effectiveness in tropical areas. High numbers of seed tubers of cultivar Sebago (630) and Nicola per m2 (>900) were obtained in the first generation, and the system is capable of producing five crops of standard cultivars in every two years. Initial results indicate that quality seed could be produced by nurseries and farmers, therefore contributing to the minimisation of soil borne diseases in an integrated management plan. This technology reduces seed production costs, benefiting seed and potato growers. © ISHS.
Resumo:
Roundwood structures have always been used for temporary and low cost shelters and other fleeting structures. Novel concepts for the use of plantation hardwoods in roundwood form in construction were developed and circulated along with an electronic questionnaire to stakeholders representing growers, designers and users of hardwood. Responses indicate that there is a high level of interest in developing products from the emerging small roundwood resource and a detailed program of research was supported and recommended by the majority of participants in the survey. These results indicate a high level of support for further investigation into the use of plantation hardwood for roundwood components. Respondents representing a wide range of stakeholders have indicated that to gain benefit from a detailed project they would require solutions for connection systems and protection from pests and weathering, indications of cost and assurance of ongoing supply for niche applications, data for strength, acoustic dampening and thermal insulation properties, acceptance by regulatory authorities and training for on-site construction.
Resumo:
The global importance of grasslands is indicated by their extent; they comprise some 26% of total land area and 80% of agriculturally productive land. The majority of grasslands are located in tropical developing countries where they are particularly important to the livelihoods of some one billion poor peoples. Grasslands clearly provide the feed base for grazing livestock and thus numerous high-quality foods, but such livestock also provide products such as fertilizer, transport, traction, fibre and leather. In addition, grasslands provide important services and roles including as water catchments, biodiversity reserves, for cultural and recreational needs, and potentially a carbon sink to alleviate greenhouse gas emissions. Inevitably, such functions may conflict with management for production of livestock products. Much of the increasing global demand for meat and milk, particularly from developing countries, will have to be supplied from grassland ecosystems, and this will provide difficult challenges. Increased production of meat and milk generally requires increased intake of metabolizable energy, and thus increased voluntary intake and/or digestibility of diets selected by grazing animals. These will require more widespread and effective application of improved management. Strategies to improve productivity include fertilizer application, grazing management, greater use of crop by-products, legumes and supplements and manipulation of stocking rate and herbage allowance. However, it is often difficult to predict the efficiency and cost-effectiveness of such strategies, particularly in tropical developing country production systems. Evaluation and on-going adjustment of grazing systems require appropriate and reliable assessment criteria, but these are often lacking. A number of emerging technologies may contribute to timely low-cost acquisition of quantitative information to better understand the soil-pasture-animal interactions and animal management in grassland systems. Development of remote imaging of vegetation, global positioning technology, improved diet markers, near IR spectroscopy and modelling provide improved tools for knowledge-based decisions on the productivity constraints of grazing animals. Individual electronic identification of animals offers opportunities for precision management on an individual animal basis for improved productivity. Improved outcomes in the form of livestock products, services and/or other outcomes from grasslands should be possible, but clearly a diversity of solutions are needed for the vast range of environments and social circumstances of global grasslands.
Resumo:
Mud crabs (Scylla spp.) are intensively caught throughout South-East Asia and support a very substantial commercial, recreational fishing and aquaculture industry. Identification of individual animals is important to improve understanding and management of this species. However, tagging of crustaceans is difficult as they frequently molt and internal tags can pose a hazard to consumers. In this pilot study we tested a new method combining passive integrated transponder tags and t-bar tags externally. 45 giant mud crabs (Scylla serrata) were captured from the wild and kept in tanks for a maximum of 10 months. We inserted tags into the abdomen of 35 giant mud crabs and tested a modified method where the combined t-bar/PIT-tag was inserted into the muscle tissue of the rear leg between the dorsal carapace plate and the top of the abdominal flap. Tagged crabs with the modified method showed 85% tag retention for molting crabs. We tested the same method in the field where 852 individuals were tagged with combined t-bar/PIT-tags of which 82 were recaptured showing 100% tag retention but without any evidence of molting having occurred. The tested method of combined t-bar/PIT-tags in giant mud crabs can further improve monitoring for wild and aquaculture populations and can be deployed widely with low cost.
Resumo:
Abstract: Although mainly grown for its sweet flavoured fruit, papaya (Carica papaya) has also been used for pharmacological purposes for many years. The reasons for use are varied with one of the best known being its anti-fungal action. Benzyl isothiocyanate (BITC) is the constituent most often implicated in this activity. Isothiocyanates are formed when the enzyme myrosinase catalyses the hydrolysis of the non-bioactive glucosinolates. This occurs when cellular contents come into contact through chewing, cutting or during extraction processes in the laboratory. While this is common in Brassica vegetables, the glucosinolate-myrosinase system is rare in fruit, papaya being a notable exception. It contains benzyl glucosinolate (BG), the glucosinolate precursor of BITC, in significant quantities. Parameters that determine the amount of BITC formed are duration of hydrolysis, presence/absence of nitrile-specifier proteins and BG content of different cultivars and tissues. We experimented with differing BITC extraction solvents, with the intention of developing a low cost, natural anti-fungal extract based on under-utilised papaya tissues. The findings suggest that papaya seeds, particularly from quarter-ripe fruit, have the potential to produce the highest levels of BITC necessary. Furthermore, they compare well with the nitrile-specifier protein-containing garden cress seeds (Lepidium sativum). To utilise the papaya seeds as a BITC source, an organic solvent such as ethanol is required to extract the largely water-insoluble BITC from the hydrolysed papaya seed mixture.
Resumo:
The transport of live fish is a crucial step to establish fish culture in captivity, and is especially challenging for species that have not been commonly cultured before, therefore transport and handling methods need to be optimized and tailored. This study describes the use of tuna tubes for small-scale transport of medium-sized pelagic fish from the Scombridae family. Tuna tubes are an array of vertical tubes that hold the fish, while fresh seawater is pumped up the tubes and through the fish mouth and gills, providing oxygen and removing wastes. In this study, 19 fish were captured using rod and line and 42% of the captured fish were transported alive in the custom-designed tuna tubes to an on-shore holding tank: five mackerel tuna (Euthynnus affinis) and three leaping bonito (Cybiosarda elegans). Out of these, just three (15.8% of total fish) acclimatized to the tank's condition. Based on these results, we discuss an improved design of the tuna tubes that has the potential to increase survival rates and enable a simple and low cost method of transporting of live pelagic fish.