2 resultados para Long-term effects
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The effect of a pre-shipment hypochlorite treatment on botrytis incidence was evaluated in a large number of rose cultivars and under different long-term storage conditions. Application parameters, stability and sources of hypochlorite were investigated. Irrespective of the type of packaging and shipment conditions, roses that received a pre-shipment treatment with 100 to 150 mg/L hypochlorite showed a significantly decreased botrytis incidence compared to non-hypochlorite treated roses. The hypochlorite treatment generally was more effective than a comparable treatment with commercial fungicides. Dipping the flower heads for approximately one second in a hypochlorite solution was more effective than spraying the heads. In few cases minor hypochlorite-induced damage on the petal tips was observed at higher concentrations (>200 mg/L). Apart from the effect on botrytis incidence, the treatment resulted in reduced water loss that may have an additional beneficial effect on the eventual flower quality. It is concluded that, apart from other obvious measures to reduce botrytis incidence (prevention of high humidity at the flower heads) a pre-shipment floral dip in 100 to 150 mg/L hypochlorite from commercial household bleach is an easy and cost effective way to reduce botrytis incidence following long term storage/transportation of roses. © 2015, International Society for Horticultural Science. All rights reserved.
Resumo:
Effects of fire on biogeochemical cycling in terrestrial ecosystem are widely acknowledged, while few studies have focused on the bacterial community under the disturbance of long-term frequent prescribed fire. In this study, three treatments (burning every two years (B2), burning every four years (B4) and no burning (B0)) were applied for 38 years in an Australian wet sclerophyll forest. Results showed that bacterial alpha diversity (i.e. bacterial OTU) in the top soil (0-10 cm) was significantly higher in the B2 treatment compared with the B0 and B4 treatments. Non-metric multidimensional analysis (NMDS) of bacterial community showed clear separation of the soil bacterial community structure among different fire frequency regimes and between the depths. Different frequency fire did not have a substantial effect on bacterial composition at phylum level or bacterial 16S rRNA gene abundance. Soil pH and C:N ratio were the major drivers for bacterial community structure in the most frequent fire treatment (B2), while other factors (EC, DOC, DON, MBC, NH 4 +, TC and TN) were significant in the less frequent burning and no burning treatments (B4 and B0). This study suggested that burning had a dramatic impact on bacterial diversity but not abundance with more frequent fire.