5 resultados para Liturgical furniture
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Improving added value and Small Medium Enterprises capacity in the utilisation of plantation timber for furniture production in Jepara region of Indonesia: improving recovery, design, manufacturing, R&D and training capacities.
Resumo:
African mahogany has demonstrated much potential, in many field trials spanning several decades and in furniture manufacturers' evaluations, as a high-value timber species for plantations in northern Australia. It is in the early stages of domestication via a low-intensity, informally-collaborative, mostly-public-sector program of conservation and genetic improvement begun 5 y ago. Silvicultural techniques are being developed through experience in both 'small grower' and larger-scale plantings. See this issue's cover for photographs.
Resumo:
The Australian African mahogany estate comprises over 12,000 ha of industrial plantations, farm-forestry plots and trials, virtually all derived from Africa-sourced wild seed. However, the better trees have given high-value products such as veneers, high-grade boards and award-winning furniture. Collaborative conservation and improvement by the Northern Territory (NT) and Queensland governments since 2000 realised seed orchards, hedge gardens and genetic tests revealing promising clones and families. Private sector R&D since the mid 2000s includes silvicultural-management and wood studies, participatory testing of government material and establishing over 90 African provenances and many single-tree seedlots in multisite provenance and family trials. Recent, mainly public sector research included a 5-agency project of 2009-12 resulting in advanced propagation technologies and greater knowledge of biology, wood properties and processing. Operational priority in the short term should focus on developing seed production areas and ‘rolling front’ clonal seed orchards. R&D priorities should include: developing and implementing a collaborative improvement strategy based on pooled resources; developing non-destructive evaluation of select-tree wood properties, micropropagation (including field testing of material from this source) to ‘industry ready’ and a select-tree index; optimising seed production in orchards; advancing controlled pollination techniques; and maximising benefits from the progeny, clone and provenance trials. Australia leads the world in improvement and ex situ conservation of African mahogany based on the governments’ 13-year program and more recent industry inputs such that accumulated genetic resources total over 120 provenances and many families from 15 of the 19 African countries of its range. Having built valuable genetic resources, expertise, technologies and knowledge, the species is almost ‘industry ready’. The industry will benefit if it exploits the comparative advantage these assets provide. However the status of much of the diverse germplasm introduced since the mid 2000s is uncertain due to changes in ownership. Further, recent reductions of government investment in forestry R&D will be detrimental unless the industry fills the funding gaps. Expansion and sustainability of the embryonic industry must capitalise on past and current R&D, while initiating and sustaining critical new work through all-stakeholder collaboration.
Resumo:
Australian forest industries have a long history of export trade of a wide range of products from woodchips(for paper manufacturing), sandalwood (essential oils, carving and incense) to high value musical instruments, flooring and outdoor furniture. For the high value group, fluctuating environmental conditions brought on by changes in mperature and relative humidity, can lead to performance problems due to consequential swelling, shrinkage and/or distortion of the wood elements. A survey determined the types of value-added products exported, including species and dimensions packaging used and export markets. Data loggers were installed with shipments to monitor temperature and relative humidity conditions. These data were converted to timber equilibrium moisture content values to provide an indication of the environment that the wood elements would be acclimatising to. The results of the initial survey indicated that primary high value wood export products included guitars, flooring, decking and outdoor furniture. The destination markets were mainly located in the northern hemisphere, particularly the United States of America, China, Hong Kong, Europe including the United Kingdom), Japan, Korea and the Middle East. Other regions importing Australian-made wooden articles were south-east Asia, New Zealand and South Africa. Different timber species have differing rates of swelling and shrinkage, so the types of timber were also recorded during the survey. Results from this work determined that the major species were ash-type eucalypts from south-eastern Australia (commonly referred to in the market as Tasmanian oak), jarrah from Western Australia, spotted gum, hoop pine, white cypress, black butt, brush box and Sydney blue gum from Queensland and New South Wales. The environmental conditions data indicated that microclimates in shipping containers can fluctuate extensively during shipping. Conditions at the time of manufacturing were usually between 10 and 12% equilibrium moisture content, however conditions during shipping could range from 5 (very dry) to 20% (very humid). The packaging systems incorporated were reported to be efficient at protecting the wooden articles from damage during transit. The research highlighted the potential risk for wood components to ‘move’ in response to periods of drier or more humid conditions than those at the time of manufacturing, and the importance of engineering a packaging system that can account for the environmental conditions experienced in shipping containers. Examples of potential dimensional changes in wooden components were calculated based on published unit shrinkage data for key species and the climatic data returned from the logging equipment. The information highlighted the importance of good design to account for possible timber movement during shipping. A timber movement calculator was developed to allow designers to input component species, dimensions, site of manufacture and destination, to see validate their product design. This calculator forms part of the free interactive website www.timbers.com.au.
Resumo:
Australian forest industries have a long history of export trade of a wide range of products from woodchips (for paper manufacturing), sandalwood (essential oils, carving and incense) to high value musical instruments, flooring and outdoor furniture. For the high value group, fluctuating environmental conditions brought on by changes in temperature and relative humidity, can lead to performance problems due to consequential swelling, shrinkage and/or distortion of the wood elements. A survey determined the types of value-added products exported, including species and dimensions packaging used and export markets. Data loggers were installed with shipments to monitor temperature and relative humidity conditions. These data were converted to timber equilibrium moisture content values to provide an indication of the environment that the wood elements would be acclimatising to. The results of the initial survey indicated that primary high value wood export products included guitars, flooring, decking and outdoor furniture. The destination markets were mainly located in the northern hemisphere, particularly the United States of America, China, Hong Kong, Europe (including the United Kingdom), Japan, Korea and the Middle East. Other regions importing Australian-made wooden articles were south-east Asia, New Zealand and South Africa. Different timber species have differing rates of swelling and shrinkage, so the types of timber were also recorded during the survey. Results from this work determined that the major species were ash-type eucalypts from south-eastern Australia (commonly referred to in the market as Tasmanian oak), jarrah from Western Australia, spotted gum, hoop pine, white cypress, black butt, brush box and Sydney blue gum from Queensland and New South Wales. The environmental conditions data indicated that microclimates in shipping containers can fluctuate extensively during shipping. Conditions at the time of manufacturing were usually between 10 and 12% equilibrium moisture content, however conditions during shipping could range from 5 (very dry) to 20% (very humid). The packaging systems incorporated were reported to be efficient at protecting the wooden articles from damage during transit. The research highlighted the potential risk for wood components to ‘move’ in response to periods of drier or more humid conditions than those at the time of manufacturing, and the importance of engineering a packaging system that can account for the environmental conditions experienced in shipping containers. Examples of potential dimensional changes in wooden components were calculated based on published unit shrinkage data for key species and the climatic data returned from the logging equipment. The information highlighted the importance of good design to account for possible timber movement during shipping. A timber movement calculator was developed to allow designers to input component species, dimensions, site of manufacture and destination, to see validate their product design.