2 resultados para Litterature and Photography
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The accurate assessment of trends in the woody structure of savannas has important implications for greenhouse accounting and land-use industries such as pastoralism. Two recent assessments of live woody biomass change from north-east Australian eucalypt woodland between the 1980s and 1990s present divergent results. The first estimate is derived from a network of permanent monitoring plots and the second from woody cover assessments from aerial photography. The differences between the studies are reviewed and include sample density, spatial scale and design. Further analyses targeting potential biases in the indirect aerial photography technique are conducted including a comparison of basal area estimates derived from 28 permanent monitoring sites with basal area estimates derived by the aerial photography technique. It is concluded that the effect of photo-scale; or the failure to include appropriate back-transformation of biomass estimates in the aerial photography study are not likely to have contributed significantly to the discrepancy. However, temporal changes in the structure of woodlands, for example, woodlands maturing from many smaller trees to fewer larger trees or seasonal changes, which affect the relationship between cover and basal area could impact on the detection of trends using the aerial photography technique. It is also possible that issues concerning photo-quality may bias assessments through time, and that the limited sample of the permanent monitoring network may inadequately represent change at regional scales
Resumo:
Forty-four study sites were established in remnant woodland in the Burdekin River catchment in tropical north-east Queensland, Australia, to assess recent (decadal) vegetation change. The aim of this study was further to evaluate whether wide-scale vegetation 'thickening' (proliferation of woody plants in formerly more open woodlands) had occurred during the last century, coinciding with significant changes in land management. Soil samples from several depth intervals were size separated into different soil organic carbon (SOC) fractions, which differed from one another by chemical composition and turnover times. Tropical (C4) grasses dominate in the Burdekin catchment, and thus δ13C analyses of SOC fractions with different turnover times can be used to assess whether the relative proportion of trees (C3) and grasses (C4) had changed over time. However, a method was required to permit standardized assessment of the δ13C data for the individual sites within the 13 Mha catchment, which varied in soil and vegetation characteristics. Thus, an index was developed using data from three detailed study sites and global literature to standardize individual isotopic data from different soil depths and SOC fractions to reflect only the changed proportion of trees (C3) to grasses (C3) over decadal timescales. When applied to the 44 individual sites distributed throughout the Burdekin catchment, 64% of the sites were shown to have experienced decadal vegetation thickening, while 29% had remained stable and the remaining 7% had thinned. Thus, the development of this index enabled regional scale assessment and comparison of decadal vegetation patterns without having to rely on prior knowledge of vegetation changes or aerial photography.