10 resultados para Lima-bean pod borer

em eResearch Archive - Queensland Department of Agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new foliar disease was observed on baby lima bean (Phaseolus lunatus) in fields across western New York State, USA. The disease occurred in 10 fields with variable incidence and severity. Symptoms were initially necrotic, tan spots on leaves with red to reddish brown irregular margins that coalesced to encompass the entire leaf and cause abscission. Pycnidia were observed within the lesions. Isolations from diseased leaves yielded several pycnidial forming fungi, including a Didymella species. These isolates were characterized by morphology and sequencing of multiple reference genes (internal transcribed spacer (ITS), partial actin, β- tubulin (tub2), translation elongation factor 1-α (TEF), 28S rDNA large subunit (LSU), rpb2, and calmodulin). A four gene phylogeny (ITS, tub2, LSU, and rpb2) showed that the isolates from baby lima bean belonged to a well-supported clade that contained the type culture of Didymella americana. Pathogenicity of the isolates on three commonly grown cultivars of baby lima bean was confirmed. Symptoms that developed on inoculated plants were similar to those observed on diseased plants in the field. This is the first report of D. americana on baby lima bean.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The response of soybean (Glycine max) and dry bean (Phaseolus vulgaris) to feeding by Helicoverpa armigera during the pod-fill stage was studied in irrigated field cages over three seasons to determine the relationship between larval density and yield loss, and to develop economic injury levels. H. armigera intensity was calculated in Helicoverpa injury equivalent (HIE) units, where 1 HIE was the consumption of one larva from the start of the infestation period to pupation. In the dry bean experiment, yield loss occurred at a rate 6.00 ± 1.29 g/HIE while the rates of loss in the three soybean experiments were 4.39 ± 0.96 g/HIE, 3.70 ± 1.21 g/HIE and 2.12 ± 0.71 g/HIE. These three slopes were not statistically different (P > 0.05) and the pooled estimate of the rate of yield loss was 3.21 ± 0.55 g/HIE. The first soybean experiment also showed a split-line form of damage curve with a rate of yield loss of 26.27 ± 2.92 g/HIE beyond 8.0 HIE and a rapid decline to zero yield. In dry bean, H. armigera feeding reduced total and undamaged pod numbers by 4.10 ± 1.18 pods/HIE and 12.88 ± 1.57 pods/HIE respectively, while undamaged seed numbers were reduced by 35.64 ± 7.25 seeds/HIE. In soybean, total pod numbers were not affected by H. armigera infestation (out to 8.23 HIE in Experiment 1) but seed numbers (in Experiments 1 and 2) and the number of seeds/pod (in all experiments) were adversely affected. Seed size increased with increases in H. armigera density in two of the three soybean experiments, indicating plant compensatory responses to H. armigera feeding. Analysis of canopy pod profiles indicated that loss of pods occurred from the top of the plant downwards, but with an increase in pod numbers close to the ground at higher pest densities as the plant attempted to compensate for damage. Based on these results, the economic injury levels for H. armigera on dry bean and soybean are approximately 0.74 HIE and 2.31 HIE/m2, respectively (0.67 and 2.1 HIE/row-m for 91 cm rows).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years the cultivation of ornamental palms (Arecaceae) has increased markedly in northern Queensland. Consequently, several insects have become important pests, particularly Rhabdoscelus obscurus (Boisduval), the cane weevil borer. The larvae of this beetle feed on various species of palms, making the plants unsaleable. Death or lodging of the trees may also result. This paper documents its pest status, derived from information in the literature and from consultation with local growers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphine, a widely used fumigant for the protection of stored grain from insect pests, kills organisms indirectly by inducing oxidative stress. High levels of heritable resistance to phosphine in the insect pest of stored grain, Rhyzopertha dominica have been detected in Asia, Australia and South America. In order to understand the evolution of phosphine resistance and to isolate the responsible genes, we have undertaken genetic linkage analysis of fully sensitive (QRD14), moderately resistant (QRD369) and highly resistant (QRD569) strains of R. dominica collected in Australia. We previously determined that two loci, rph1 and rph2, confer high-level resistance on strain QRD569, which was collected in 1997. We have now confirmed that rph1 is responsible for the moderate resistance of strain QRD369, which was collected in 1990, and is shared with a highly resistant strain from the same geographical region, QRD569. In contrast, rph2 by itself confers only very weak resistance, either as a heterozygote or as a homozygote and was not discovered in the field until weak resistance (probably due to rph1) had become ubiquitous. Thus, high-level resistance against phosphine has evolved via stepwise acquisition of resistance alleles, first at rph1 and thereafter at rph2. The semi-dominance of rph2 together with the synergistic interaction between rph1 and rph2 would have led to rapid selection for homozygosity. A lack of visible fitness cost associated with alleles at either locus suggests that the resistance phenotype will persist in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing resistance to phosphine (PH 3) in insect pests, including lesser grain borer (Rhyzopertha dominica) has become a critical issue, and development of effective and sustainable strategies to manage resistance is crucial. In practice, the same grain store may be fumigated multiple times, but usually for the same exposure period and concentration. Simulating a single fumigation allows us to look more closely at the effects of this standard treatment.We used an individual-based, two-locus model to investigate three key questions about the use of phosphine fumigant in relation to the development of PH 3 resistance. First, which is more effective for insect control; long exposure time with a low concentration or short exposure period with a high concentration? Our results showed that extending exposure duration is a much more efficient control tactic than increasing the phosphine concentration. Second, how long should the fumigation period be extended to deal with higher frequencies of resistant insects in the grain? Our results indicated that if the original frequency of resistant insects is increased n times, then the fumigation needs to be extended, at most, n days to achieve the same level of insect control. The third question is how does the presence of varying numbers of insects inside grain storages impact the effectiveness of phosphine fumigation? We found that, for a given fumigation, as the initial population number was increased, the final survival of resistant insects increased proportionally. To control initial populations of insects that were n times larger, it was necessary to increase the fumigation time by about n days. Our results indicate that, in a 2-gene mediated resistance where dilution of resistance gene frequencies through immigration of susceptibles has greater effect, extending fumigation times to reduce survival of homozygous resistant insects will have a significant impact on delaying the development of resistance. © 2012 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we describe and compare two individual-based models constructed to investigate how genetic factors influence the development of phosphine resistance in lesser grain borer (R. dominica). One model is based on the simplifying assumption that resistance is conferred by alleles at a single locus, while the other is based on the more realistic assumption that resistance is conferred by alleles at two separate loci. We simulated the population dynamic of R. dominica in the absence of phosphine fumigation, and under high and low dose phosphine treatments, and found important differences between the predictions of the two models in all three cases. In the absence of fumigation, starting from the same initial frequencies of genotypes, the two models tended to different stable frequencies, although both reached Hardy-Weinberg equilibrium. The one-locus model exaggerated the equilibrium proportion of strongly resistant beetles by 3.6 times, compared to the aggregated predictions of the two-locus model. Under a low dose treatment the one-locus model overestimated the proportion of strongly resistant individuals within the population and underestimated the total population numbers compared to the two-locus model. These results show the importance of basing resistance evolution models on realistic genetics and that using oversimplified one-locus models to develop pest control strategies runs the risk of not correctly identifying tactics to minimise the incidence of pest infestation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant secondary chemistry mediates the ability of herbivores to locate, accept and survive on potential host plants. We examined the relationship between attack by the cerambycid beetle Phoracantha solida and the chemistry of the secondary phloem (inner bark) of two differentially attacked plantation forestry taxa, Corymbia variegata and its hybrid with C. torelliana. We hypothesised that this differential rate of attack may have to do with differences in secondary chemistry between the taxa. We found differences in the bark chemistry of the taxa, both with respect to phenolic compounds and terpenoids. We could detect no difference between bored and non-bored C. variegata trees (the less preferred, but co-evolved host). Hybrid trees were not different in levels of total polyphenols, flavanols or terpenes according to attack status, but acetone extracts were significantly different between bored and non-bored trees. We propose that variations in the bark chemistry explain the differential attack rate between C. variegata and the hybrid hosts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ubiquitous fungal pathogen Macrophomina phaseolina is best known as causing charcoal rot and premature death when host plants are subject to post-flowering stress. Overseas reports of M.phaseolina causing a rapid rot during the sprouting of Australian mungbean seed resulted in an investigation of the possible modes of infection of seed. Isolations from serial portions of 10 mungbean plants naturally infected with the pathogen revealed that on most plants there were discrete portions of infected tissue separated by apparently healthy tissue. The results from these studies, together with molecular analysis of isolates collected from infected tissue on two of the plants, suggested that aerial infection of aboveground parts by different isolates is common. Inoculations of roots and aboveground parts of mungbean plants at nine temperaturexsoil moisture incubation combinations and of detached green pods strongly supported the concept that seed infection results from infection of pods by microsclerotia, rather than from hyphae growing systemically through the plant after root or stem infection. This proposal is reinforced by anecdotal evidence that high levels of seed infection are common when rainfall occurs during pod fill, and by the isolation of M.phaseolina from soil peds collected on pods of mungbean plants in the field. However, other experiments showed that when inoculum was placed within 130mm of a green developing pod and a herbicide containing paraquat and diquat was sprayed on the inoculated plants, M.phaseolina was capable of some systemic growth from vegetative tissue into the pods and seeds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present here the complete genome sequences of a novel polerovirus from Trifolium subterraneum (subterranean clover) and Cicer arietinum (chickpea) and compare these to a partial viral genome sequence obtained from Macroptilium lathyroides (phasey bean). We propose the name phasey bean mild yellows virus for this novel polerovirus.