3 resultados para Library for Visual Image Analysis

em eResearch Archive - Queensland Department of Agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of near infrared (NIR) hyperspectral imaging and hyperspectral image analysis for distinguishing between hard, intermediate and soft maize kernels from inbred lines was evaluated. NIR hyperspectral images of two sets (12 and 24 kernels) of whole maize kernels were acquired using a Spectral Dimensions MatrixNIR camera with a spectral range of 960-1662 nm and a sisuChema SWIR (short wave infrared) hyperspectral pushbroom imaging system with a spectral range of 1000-2498 nm. Exploratory principal component analysis (PCA) was used on absorbance images to remove background, bad pixels and shading. On the cleaned images. PCA could be used effectively to find histological classes including glassy (hard) and floury (soft) endosperm. PCA illustrated a distinct difference between glassy and floury endosperm along principal component (PC) three on the MatrixNIR and PC two on the sisuChema with two distinguishable clusters. Subsequently partial least squares discriminant analysis (PLS-DA) was applied to build a classification model. The PLS-DA model from the MatrixNIR image (12 kernels) resulted in root mean square error of prediction (RMSEP) value of 0.18. This was repeated on the MatrixNIR image of the 24 kernels which resulted in RMSEP of 0.18. The sisuChema image yielded RMSEP value of 0.29. The reproducible results obtained with the different data sets indicate that the method proposed in this paper has a real potential for future classification uses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Characterisation of a number of key wood properties utilising ‘state of the art’ tools was achieved for four commercial Australian hardwood species: Corymbia citriodora, Eucalyptus pilularis, Eucalyptus marginata and Eucalyptus obliqua. The wood properties were measured for input into microscopic (cellular level) and macroscopic (board level) vacuum drying models currently under development. Morphological characterisation was completed using a combination of ESEM, optical microscopy and a custom vector-based image analysis software. A clear difference in wood porosity, size, wall thickness and orientation was evident between species. Wood porosity was measured using a combination of fibre and vessel porosity. A highly sensitive microbalance and scanning laser micrometres were used to measure loss of moisture content in conjunction with directional shrinkage on micro-samples of E. obliqua to investigate the validity of measuring collapse-free shrinkage in very thin sections. Collapse-free shrinkage was characterised, and collapse propensity was verified when testing thicker samples. Desorption isotherms were calculated for each species using wood–water relations data generated from shrinkage experiments. Fibre geometry and wood shrinkage anisotropy were used to explain the observed difficulty in drying of the different species in terms of collapse and drying stress-related degrade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agricultural pests are responsible for millions of dollars in crop losses and management costs every year. In order to implement optimal site-specific treatments and reduce control costs, new methods to accurately monitor and assess pest damage need to be investigated. In this paper we explore the combination of unmanned aerial vehicles (UAV), remote sensing and machine learning techniques as a promising methodology to address this challenge. The deployment of UAVs as a sensor platform is a rapidly growing field of study for biosecurity and precision agriculture applications. In this experiment, a data collection campaign is performed over a sorghum crop severely damaged by white grubs (Coleoptera: Scarabaeidae). The larvae of these scarab beetles feed on the roots of plants, which in turn impairs root exploration of the soil profile. In the field, crop health status could be classified according to three levels: bare soil where plants were decimated, transition zones of reduced plant density and healthy canopy areas. In this study, we describe the UAV platform deployed to collect high-resolution RGB imagery as well as the image processing pipeline implemented to create an orthoimage. An unsupervised machine learning approach is formulated in order to create a meaningful partition of the image into each of the crop levels. The aim of this approach is to simplify the image analysis step by minimizing user input requirements and avoiding the manual data labelling necessary in supervised learning approaches. The implemented algorithm is based on the K-means clustering algorithm. In order to control high-frequency components present in the feature space, a neighbourhood-oriented parameter is introduced by applying Gaussian convolution kernels prior to K-means clustering. The results show the algorithm delivers consistent decision boundaries that classify the field into three clusters, one for each crop health level as shown in Figure 1. The methodology presented in this paper represents a venue for further esearch towards automated crop damage assessments and biosecurity surveillance.