1 resultado para Learning methods
em eResearch Archive - Queensland Department of Agriculture
Filtro por publicador
- JISC Information Environment Repository (2)
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Repository Napier (3)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (3)
- Aberystwyth University Repository - Reino Unido (10)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (9)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (9)
- Aston University Research Archive (48)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (22)
- Boston University Digital Common (2)
- Brock University, Canada (8)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (18)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (17)
- CentAUR: Central Archive University of Reading - UK (26)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (4)
- Cochin University of Science & Technology (CUSAT), India (8)
- Coffee Science - Universidade Federal de Lavras (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (8)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (18)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (5)
- Digital Commons @ DU | University of Denver Research (5)
- Digital Commons at Florida International University (19)
- Digital Peer Publishing (8)
- DigitalCommons@The Texas Medical Center (4)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (2)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (8)
- Ecology and Society (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (4)
- Greenwich Academic Literature Archive - UK (6)
- Helda - Digital Repository of University of Helsinki (7)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (11)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (4)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (8)
- Memorial University Research Repository (5)
- Ministerio de Cultura, Spain (3)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (1)
- Open University Netherlands (4)
- Portal de Revistas Científicas Complutenses - Espanha (6)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (75)
- Queensland University of Technology - ePrints Archive (141)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional da Universidade de Brasília (2)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (29)
- Research Open Access Repository of the University of East London. (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (2)
- Scielo España (3)
- Scientific Open-access Literature Archive and Repository (1)
- Universidad de Alicante (7)
- Universidad Politécnica de Madrid (35)
- Universidade de Lisboa - Repositório Aberto (7)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universitat de Girona, Spain (6)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Montréal, Canada (8)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (2)
- University of Michigan (1)
- University of Queensland eSpace - Australia (16)
- University of Southampton, United Kingdom (5)
- University of Washington (16)
- WestminsterResearch - UK (4)
- Worcester Research and Publications - Worcester Research and Publications - UK (5)
Resumo:
Agricultural pests are responsible for millions of dollars in crop losses and management costs every year. In order to implement optimal site-specific treatments and reduce control costs, new methods to accurately monitor and assess pest damage need to be investigated. In this paper we explore the combination of unmanned aerial vehicles (UAV), remote sensing and machine learning techniques as a promising methodology to address this challenge. The deployment of UAVs as a sensor platform is a rapidly growing field of study for biosecurity and precision agriculture applications. In this experiment, a data collection campaign is performed over a sorghum crop severely damaged by white grubs (Coleoptera: Scarabaeidae). The larvae of these scarab beetles feed on the roots of plants, which in turn impairs root exploration of the soil profile. In the field, crop health status could be classified according to three levels: bare soil where plants were decimated, transition zones of reduced plant density and healthy canopy areas. In this study, we describe the UAV platform deployed to collect high-resolution RGB imagery as well as the image processing pipeline implemented to create an orthoimage. An unsupervised machine learning approach is formulated in order to create a meaningful partition of the image into each of the crop levels. The aim of this approach is to simplify the image analysis step by minimizing user input requirements and avoiding the manual data labelling necessary in supervised learning approaches. The implemented algorithm is based on the K-means clustering algorithm. In order to control high-frequency components present in the feature space, a neighbourhood-oriented parameter is introduced by applying Gaussian convolution kernels prior to K-means clustering. The results show the algorithm delivers consistent decision boundaries that classify the field into three clusters, one for each crop health level as shown in Figure 1. The methodology presented in this paper represents a venue for further esearch towards automated crop damage assessments and biosecurity surveillance.