4 resultados para Landsat 8

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The major cuticular hydrocarbons from the cane beetle species Antitrogus parvulus were deduced to be 4,6,8,10,16,18-hexa- and 4,6,8,10,16- pentamethyldocosanes 2 and 3, respectively. Isomers of 2,4,6,8-tetramethylundecanal 27, 36, and 37, derived from 2,4,6-trimethylphenol, were coupled with the phosphoranes 28 and 29 to furnish alkenes and, by reduction, diastereomers of 2 and 3. Chromatographic and spectroscopic comparisons confirmed 2 as either 6a or 6b and 3 as either 34a or 34b.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil nitrogen (N) supply in the Vertosols of southern Queensland, Australia has steadily declined as a result of long-term cereal cropping without N fertiliser application or rotations with legumes. Nitrogen-fixing legumes such as lucerne may enhance soil N supply and therefore could be used in lucerne-wheat rotations. However, lucerne leys in this subtropical environment can create a soil moisture deficit, which may persist for a number of seasons. Therefore, we evaluated the effect of varying the duration of a lucerne ley (for up to 4 years) on soil N increase, N supply to wheat, soil water changes, wheat yields and wheat protein on a fertility-depleted Vertosol in a field experiment between 1989 and 1996 at Warra (26degrees 47'S, 150degrees53'E), southern Queensland. The experiment consisted of a wheat-wheat rotation, and 8 treatments of lucerne leys starting in 1989 (phase 1) or 1990 (phase 2) for 1,2,3 or 4 years duration, followed by wheat cropping. Lucerne DM yield and N yield increased with increasing duration of lucerne leys. Soil N increased over time following 2 years of lucerne but there was no further significant increase after 3 or 4 years of lucerne ley. Soil nitrate concentrations increased significantly with all lucerne leys and moved progressively downward in the soil profile from 1992 to 1995. Soil water, especially at 0.9-1.2 m depth, remained significantly lower for the next 3 years after the termination of the 4 year lucerne ley than under continuous wheat. No significant increase in wheat yields was observed from 1992 to 1995, irrespective of the lucerne ley. However, wheat grain protein concentrations were significantly higher under lucerne-wheat than under wheat wheat rotations for 3-5 years. The lucerne yield and soil water and nitrate-N concentrations were satisfactorily simulated with the APSIM model. Although significant N accretion occurred in the soil following lucerne leys, in drier seasons, recharge of the drier soil profile following long duration lucerne occurred after 3 years. Consequently, 3- and 4-year lucerne-wheat rotations resulted in more variable wheat yields than wheat-wheat rotations in this region. The remaining challenge in using lucerne-wheat rotations is balancing the N accretion benefits with plant-available water deficits, which are most likely to occur in the highly variable rainfall conditions of this region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1:100,000 coastal wetland vegetation mapping for Queensland including mangrove communities, saltpans and saline grasslands. Mapping taken from Landsat TM images with ground truthing. Additional metadata is available for details of techniques and accuracy for each section of coastline. Data Currency for each section of coast: NT border to Flinders River - 1995 SE Gulf of Carpentaria - 1987, 1988, 1991, 1992 Cape York Peninsula - 1986-88, 1991 Cape Trib to Bowling Green Bay - 1997-99 The Burdekin Region - 1991 The Bowen Region - 1994-95 The Whitsunday Region - 1997 Repulse Bay - 1989 Central Qld - 1995, 1997 The Curtis Coast Region - 1997 Round Hill Head to Tin Can Inlet - 1997 Moreton Region - 1995. Article Links: 1/ #1662. Queensland Coastal Wetland Resources: the Northern Territory Border to Flinders River. Project Report. Information Series QI00099. 2/ #1663. Queensland Coastal Wetland Resources: Sand Bay to Keppel Bay. Project Report. Information Series QI00100. 3/ #1664. Queensland Coastal Wetland Resources: Cape Tribulation to Bowling Green Bay. Project Report. Information Series QI01064. 4/ #1666. Coastal Wetlands Resources Investigation of the Burdekin Delta for declaration as fisheries reserves. Report to Ocean Rescue 2000. Project Report. 5/ #1667. Queensland Coastal Wetland Resource Investigation of the Bowen Region: Cape Upstart to Gloucester Island. Project Report. 6/ #1784. Resource Assessment of the Tidal Wetland Vegetation of Western Cape York Peninsula, North Queensland, Report to Ocean Rescue 2000. Project Report. 7/ #1785. Marine Vegetation of Cape York Peninsula. Cape York Peninsula Land Use Strategy. Project Report. 8/ #3544. Queensland Coastal Wetland Resources: The Whitsunday Region. Project Report.Information Series QI01065. 9/ #3545. Queensland Coastal Wetland Resources: Round Hill Head to Tin Can Inlet. Project Report. Information Series QI99081.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retrospective identification of fire severity can improve our understanding of fire behaviour and ecological responses. However, burnt area records for many ecosystems are non-existent or incomplete, and those that are documented rarely include fire severity data. Retrospective analysis using satellite remote sensing data captured over extended periods can provide better estimates of fire history. This study aimed to assess the relationship between the Landsat differenced normalised burn ratio (dNBR) and field measured geometrically structured composite burn index (GeoCBI) for retrospective analysis of fire severity over a 23 year period in sclerophyll woodland and heath ecosystems. Further, we assessed for reduced dNBR fire severity classification accuracies associated with vegetation regrowth at increasing time between ignition and image capture. This was achieved by assessing four Landsat images captured at increasing time since ignition of the most recent burnt area. We found significant linear GeoCBI–dNBR relationships (R2 = 0.81 and 0.71) for data collected across ecosystems and for Eucalyptus racemosa ecosystems, respectively. Non-significant and weak linear relationships were observed for heath and Melaleuca quinquenervia ecosystems, suggesting that GeoCBI–dNBR was not appropriate for fire severity classification in specific ecosystems. Therefore, retrospective fire severity was classified across ecosystems. Landsat images captured within ~ 30 days after fire events were minimally affected by post burn vegetation regrowth.