6 resultados para Land Law of 1850
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Attention is directed at land application of piggery effluent (containing urine, faeces, water, and wasted feed) as a potential source of water resource contamination with phosphorus (P). This paper summarises P-related properties of soil from 0-0.05 m depth at 11 piggery effluent application sites, in order to explore the impact that effluent application has had on the potential for run-off transport of P. The sites investigated were situated on Alfisol, Mollisol, Vertisol, and Spodosol soils in areas that received effluent for 1.5-30 years (estimated effluent-P applications of 100-310000 kg P/ha in total). Total (PT), bicarbonate extractable (PB), and soluble P forms were determined for the soil (0-0.05 m) at paired effluent and no-effluent sites, as well as texture, oxalate-extractable Fe and Al, organic carbon, and pH. All forms of soil P at 0-0.05 m depth increased with effluent application (PB at effluent sites was 1.7-15 times that at no-effluent sites) at 10 of the 11 sites. Increases in PB were strongly related to net P applications (regression analysis of log values for 7 sites with complete data sets: 82.6 % of variance accounted for, p <0.01). Effluent irrigation tended to increase the proportion of soil PT in dilute CaCl2-extractable forms (PTC: effluent average 2.0 %; no-effluent average 0.6%). The proportion of PTC in non-molybdate reactive forms (centrifuged supernatant) decreased (no-effluent average, 46.4 %; effluent average, 13.7 %). Anaerobic lagoon effluent did not reliably acidify soil, since no consistent relationship was observed for pH with effluent application. Soil organic carbon was increased in most of the effluent areas relative to the no-effluent areas. The four effluent areas where organic carbon was reduced had undergone intensive cultivation and cropping. Current effluent management at many of the piggeries failed to maximise the potential for waste P recapture. Ten of the case-study effluent application areas have received effluent-P in excess of crop uptake. While this may not represent a significant risk of leaching where sorption retains P, it has increased the risk of transport of P by run-off. Where such sites are close to surface water, run-off P loads should be managed.
Resumo:
The amounts of farm dairy effluent stored in ponds and irrigated to land have steadily increased with the steady growth of New Zealand's dairy industry. About 80% of dairy farms now operate with effluent storage ponds allowing deferred irrigation. These storage and irrigation practices cause emissions of greenhouse gases (GHG) and ammonia. The current knowledge of the processes causing these emissions and the amounts emitted is reviewed here. Methane emissions from ponds are the largest contributor to the total GHG emissions from effluent in managed manure systems in New Zealand. Nitrous oxide emissions from anaerobic ponds are negligible, while ammonia emissions vary widely between different studies, probably because they depend strongly on pH and manure composition. The second-largest contribution to GHG emissions from farm dairy effluent comes from nitrous oxide emissions from land application. Ammonia emissions from land application of effluent in New Zealand were found to be less than those reported elsewhere from the application of slurries. Recent studies have suggested that New Zealand's current GHG inventory method to estimate methane emissions from effluent ponds should be revised. The increasing importance of emissions from ponds, while being a challenge for the inventory, also provides an opportunity to achieve mitigation of emissions due to the confined location of where these emissions occur. © 2015 © 2015 The Royal Society of New Zealand.
Resumo:
Land application of piggery effluent (containing urine, faeces, water, and wasted feed) is under close scrutiny as a potential source of water resource contamination with phosphorus (P). This paper investigates two case studies of the impact of long-term piggery effluent-P application to soil. A Natrustalf (Sodosol) at P1 has received a net load of 3700 kg effluent P/ha over 19 years. The Haplustalf (Dermosol) selected (P2) has received a net load of 310 000 kg P/ha over 30 years. Total, bicarbonate extractable, and soluble P forms were determined throughout the soil profiles for paired (irrigated and unirrigated) sites at P1 and P2, as well as P sorption and desorption characteristics. Surface bicarbonate (PB, 0 - 0.05 m depth) and dilute CaCl2 extractable molybdate-reactive P (PC) have been significantly elevated by effluent irrigation (P1: PB unirrigated 23±1, irrigated 290±6; PC unirrigated 0.03±0.00, irrigated 23.9±0.2. P2: PB unirrigated 72±48, irrigated 3950±1960; PC unirrigated 0.7±0.0, irrigated 443±287 mg P/kg; mean±s.d.). Phosphorus enrichment to 1.5 m, detected as PB, was observed at P2. Elevated concentrations of CaCl2 extractable organic P forms (POC; estimated by non-molybdate reactive P in centrifuged supernatants) were observed from the soil surface of P1 to a depth of 0.4 m. Despite the extent of effluent application at both of these sites, only P1 displayed evidence of significant accumulation of POC. The increase in surface soil total P (0 - 0.05 m depth) due to effluent irrigation was much greater than laboratory P sorption (>25 times for P1; >57 times for P2) for a comparable range of final solution concentrations (desorption extracts ranged from 1-5 mg P/L for P1 and 50-80 mg P/L for P2). Precipitation of sparingly soluble P phases was evidenced in the soils of the P2 effluent application area.
Resumo:
The impact of excessive sediment loads entering into the Great Barrier Reef lagoon has led to increased awareness of land condition in grazing lands. Improved ground cover and land condition have been identified as two important factors in reducing sediment loads. This paper reports the economics of land regeneration using case studies for two different land types in the Fitzroy Basin. The results suggest that for sediment reduction to be achieved from land regeneration of more fertile land types (brigalow blackbutt) the most efficient method of allocating funds would be through extension and education. However for less productive country (narrow leaved ironbark woodlands) incentives will be required. The analysis also highlights the need for further scientific data to undertake similar financial assessments of land regeneration for other locations in Queensland.
Resumo:
One major benefit of land application of biosolids is to supply nitrogen (N) for agricultural crops, and understanding mineralisation processes is the key for better N-management strategies. Field studies were conducted to investigate the process of mineralisation of three biosolids products (aerobic, anaerobic, and thermally dried biosolids) incorporated into four different soils at rates of 7-90 wet t/ha in subtropical Queensland. Two of these studies also examined mineralisation rates of commonly used organic amendments (composts, manures, and sugarcane mill muds). Organic N in all biosolids products mineralised very rapidly under ambient conditions in subtropical Queensland, with rates much faster than from other common amendments. Biosolids mineralisation rates ranged from 30 to 80% of applied N during periods ranging from 3.5 to 18 months after biosolids application; these rates were much higher than those suggested in the biosolids land application guidelines established by the NSW EPA (15% for anaerobic and 25% for aerobic biosolids). There was no consistently significant difference in mineralisation rate between aerobic and anaerobic biosolids in our studies. When applied at similar rates of N addition, other organic amendments supplied much less N to the soil mineral N and plant N pools during the crop season. A significant proportion of the applied biosolids total N (up to 60%) was unaccounted for at the end of the observation period. High rates of N addition in calculated Nitrogen Limited Biosolids Application Rates (850-1250 kg N/ha) resulted in excessive accumulation of mineral N in the soil profile, which increases the environmental risks due to leaching, runoff, or gaseous N losses. Moreover, the rapid mineralisation of the biosolids organic N in these subtropical environments suggests that biosolids should be applied at lower rates than in temperate areas, and that care must be taken with the timing to maximise plant uptake and minimise possible leaching, runoff, or denitrification losses of mineralised N.
Resumo:
There is an increasing need to understand what makes vegetation at some locations more sensitive to climate change than others. For savanna rangelands, this requires building knowledge of how forage production in different land types will respond to climate change, and identifying how location-specific land type characteristics, climate and land management control the magnitude and direction of its responses to change. Here, a simulation analysis is used to explore how forage production in 14 land types of the north-eastern Australian rangelands responds to three climate change scenarios of +3A degrees C, +17% rainfall; +2A degrees C, -7% rainfall; and +3A degrees C, -46% rainfall. Our results demonstrate that the controls on forage production responses are complex, with functional characteristics of land types interacting to determine the magnitude and direction of change. Forage production may increase by up to 60% or decrease by up to 90% in response to the extreme scenarios of change. The magnitude of these responses is dependent on whether forage production is water or nitrogen (N) limited, and how climate changes influence these limiting conditions. Forage production responds most to changes in temperature and moisture availability in land types that are water-limited, and shows the least amount of change when growth is restricted by N availability. The fertilisation effects of doubled atmospheric CO2 were found to offset declines in forage production under 2A degrees C warming and a 7% reduction in rainfall. However, rising tree densities and declining land condition are shown to reduce potential opportunities from increases in forage production and raise the sensitivity of pastures to climate-induced water stress. Knowledge of these interactions can be applied in engaging with stakeholders to identify adaptation options.