5 resultados para LEVEL STRUCTURE
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The East Indies triangle, bordered by the Phillipines, Malay Peninsula and New Guinea, has a high level of tropical marine species biodiversity. Pristipomoides multidens is a large, long-lived, fecund snapper species that is distributed throughout the East Indies and Indo-Pacific. Samples were analysed from central and eastern Indonesia and northern Australia to test for genetic discontinuities in population structure. Fish (n = 377) were collected from the Indonesian islands of Bali, Sumbawa, Flores, West Timor, Tanimbar and Tual along with 131 fish from two northern Australian locations (Arafura and Timor Seas) from a previous study. Genetic variation in the control region of the mitochondrial genome was assayed using restriction fragment length polymorphism and direct sequencing. Haplotype diversity was high (0.67-0.82), as was intraspecific sequence divergence (range 0-5.8%). FST between pairs of populations ranged from 0 to 0.2753. Genetic subdivision was apparent on a small spatial scale; FST was 0.16 over 191 km (Bali/Sumbawa) and 0.17 over 491 km (Bali/Flores). Constraints to dispersal that contribute to, and maintain, the observed degree of genetic subdivision are experienced presumably by all life history stages of this tropical marine finfish. The constraints may include (1) little or no movement of eggs or larvae, (2) little or no home range or migratory movement of adults and (3) loss of larval cohorts due to transport of larvae away from suitable habitat by prevailing currents
Resumo:
Identifying species boundaries within morphologically indistinguishable cryptic species complexes is often contentious. For the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae), the lack of a clear understanding about the genetic limits of the numerous genetic groups and biotypes so far identified has resulted in a lack of consistency in the application of the terms, the approaches use to apply them and in our understanding of what genetic structure within B. tabaci means. Our response has been to use mitochondrial gene cytochrome oxidase one to consider how to clearly and consistently define genetic separation. Using Bayesian phylogenetic analysis and analysis of sequence pairwise divergence we found a considerably higher to number of genetic groups than had been previously determined with two breaks in the distribution, one at 11% and another at 3.5%. At >11% divergence, 11 distinct groups were resolved, whereas at >3.5% divergence 24 groups were identified. Consensus sequences for each of these groups were determined and were shown to be useful in the correct assignment of sequences of unknown origin. The 3.5% divergence bound is consistent with species level separations in other insect taxa and Suggests that B. tabaci is it cryptic species composed of at least 24 distinct species. We further show that the placement of Bemesia atriplex (Froggatt) within the B. tabaci in, group adds further weight to the argument for species level separation within B. tabaci. This new analysis, which constructs consensus sequences and uses these its a standard against which unknown sequences call be compared, provides for the first time it consistent means of identifying the genetic hounds of each species with it high degree of certainty.
Resumo:
The white-spotted eagle ray Aetobatus narinari is a species complex that occurs circumglobally throughout warm-temperate waters. Aetobatus narinari is semi-pelagic and large (up to 300 cm disc width), suggesting high dispersal capabilities and gene flow on a wide spatial scale. Sequence data from two mitochondrial genes, cytochrome b (cytb) and NADH dehydrogenase subunit 4 (ND4), were used to determine the genetic variability within and among 18 sampling locations in the central Indo-Pacific biogeographical region. Populations in the Indo-Pacific were highly genetically structured with c. 70% of the total genetic variation found among three geographical regions (East China Sea, Southeast Asia and Australia). FST was 0.64 for cytb and 0.53 for ND4, with φST values being even larger, that is, 0.78 for cytb and 0.65 for ND4. This high-level genetic partitioning provides strong evidence against extensive gene flow in A. narinari. The degree of genetic population structuring in the Indo-Pacific was similar to that found on a global scale. Global FST was 0.63 for cytb and 0.57 for ND4, and global φST values were 0.94 for cytb and 0.82 for ND4. This suggests that the A. narinari complex may be more speciose than the two or three species proposed to date. Further sampling and genetic analyses are likely to uncover the ‘evolutionarily significant’ and ‘management’ units that are critical to determine the susceptibilities of individual populations to regional fishing pressures and to provide advice on management options. Network analyses showed a close genetic relationship between haplotypes from the central Indo-Pacific and South Africa, providing support for a proposed dispersal pathway from the possible centre of origin of the A. narinari species complex in the Indo-Pacific into the Atlantic Ocean.
Resumo:
Northern Australia is considered to be one of the last strongholds for three critically endangered sawfishes, Pristis zijsron, Pristis clavata, and Pristis microdon, making these populations of global significance. Population structure and levels of genetic diversity were assessed for each species across northern Australia using a portion of the mitochondrial control region. Statistically significant genetic structure was detected in all three species, although it was higher in P. microdon (F-ST = 0.811; N = 149) than in either P. clavata (F-ST = 0.419; N = 73) or P. zijsron (F-ST = 0.202; N = 49), possibly due to a much higher and/or localized level of female philopatry in P. microdon. The overall levels of haplotype diversity in P. zijsron (h = 0.555), P. clavata (h = 0.489), and P. microdon (h = 0.650) were moderate, although it appears to be reduced in the assemblages of P. zijsron and P. clavata in the Gulf of Carpentaria (h = 0.342 and h = 0.083, respectively). Since female migration (replenishment) between regions is unlikely, conservation plans should strive to maintain current levels of diversity and abundances in the regional assemblages of each species.
Resumo:
Multi-species fisheries are complex to manage and the ability to develop an appropriate governance structure is often seriously impeded because trading between sustainability objectives at the species level, economic objectives at the fleet level, and social objectives at the community scale, is complex. Many of these fisheries also tend to have a mix of information, with stock assessments available for some species and almost no information on other species. The fleets themselves comprise fishers from small family enterprises to large vertically integrated businesses. The Queensland trawl fishery in Australia is used as a case study for this kind of fishery. It has the added complexity that a large part of the fishery is within a World Heritage Area, the Great Barrier Reef Marine Park, which is managed by an agency of the Australian Commonwealth Government whereas the fishery itself is managed by the Queensland State Government. A stakeholder elicitation process was used to develop social, governance, economic and ecological objectives, and then weight the relative importance of these. An expert group was used to develop different governance strawmen (or management strategies) and these were assessed by a group of industry stakeholders and experts using multi-criteria decision analysis techniques against the different objectives. One strawman clearly provided the best overall set of outcomes given the multiple objectives, but was not optimal in terms of every objective, demonstrating that even the "best" strawman may be less than perfect. © 2012.