3 resultados para LENGTH DIFFERENCE TEST
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Non-parametric difference tests such as triangle and duo-trio tests traditionally are used to establish differences or similarities between products. However they only supply the researcher with partial answers and often further testing is required to establish the nature, size and direction of differences. This paper looks at the advantages of the difference from control (DFC) test (also known as degree of difference test) and discusses appropriate applications of the test. The scope and principle of the test, panel composition and analysis of results are presented with the aid of suitable examples. Two of the major uses of the DFC test are in quality control and shelf-life testing. The role DFC takes in these areas and the use of other tests to complement the testing is discussed. Controls or standards are important in both these areas and the use of standard products, mental and written standards and blind controls are highlighted. The DFC test has applications in products where the duo-trio and triangle tests cannot be used because of the normal heterogeneity of the product. While the DFC test is a simple difference test it can be structured to give the researcher more valuable data and scope to make informed decisions about their product.
Resumo:
Report on evidence of shrinkage of live coral trout during professional fishing operations on the Great Barrier Reef in 2000. Excel data includes the following fields: Column A. Fish (fish number from 1 -24) Column B. Bin (1-8, container the fish was held in during the experiment) Column C. Measure (1-7, number of the measurement of each fish) Column D. Observer (1 or 2, making the measurement) Column E. Time 2 Column F. Time (time of the day the measurement was made) Column G. FL (Fork Length) Column H. TL (Total Length) Column I. Difference (difference in length between measures) Column J. Order Column K. Temperature (surface water temp under the boat)
Resumo:
Understanding how aquatic species grow is fundamental in fisheries because stock assessment often relies on growth dependent statistical models. Length-frequency-based methods become important when more applicable data for growth model estimation are either not available or very expensive. In this article, we develop a new framework for growth estimation from length-frequency data using a generalized von Bertalanffy growth model (VBGM) framework that allows for time-dependent covariates to be incorporated. A finite mixture of normal distributions is used to model the length-frequency cohorts of each month with the means constrained to follow a VBGM. The variances of the finite mixture components are constrained to be a function of mean length, reducing the number of parameters and allowing for an estimate of the variance at any length. To optimize the likelihood, we use a minorization–maximization (MM) algorithm with a Nelder–Mead sub-step. This work was motivated by the decline in catches of the blue swimmer crab (BSC) (Portunus armatus) off the east coast of Queensland, Australia. We test the method with a simulation study and then apply it to the BSC fishery data.