13 resultados para Kuiper Belt
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The Brigalow Belt bioregion of southern and central Queensland supports a large percentage of northern Australia's sown pastures and beef herd. The Brigalow soils were widely thought to have adequate phosphorus (P) for cropping, sown pastures and grazing animals, which has led to almost no use of P fertiliser on sown pastures. The majority of pastures established in the region were sown with tropical grasses only (i.e. no legumes were sown). Under grass-only pastures, nitrogen (N) mineralisation rates decline with time since establishment as N is 'tied-up' in soil organic matter. This process leads to a significant decline in pasture and animal productivity and is commonly called 'pasture rundown'. Incorporating pasture legumes has been identified as the best long-term solution to improve the productivity of rundown sown grass pastures. Pasture legumes require adequate P to grow well and fix large amounts of N to increase the productivity of rundown sown grass pastures. Producers and farm advisors have traditionally thought that P fertiliser is not cost-effective for legume-based improved pastures growing on inland areas of Queensland despite there being little, if any, data on production responses or their economic outcomes. Recent studies show large and increasing areas of low plant available soil P and large responses by pasture legumes to P fertiliser on Brigalow soils. The economic analysis in this scoping study indicates potential returns of 9–15% on extra funds invested from the application of P fertiliser, when establishing legumes into grass pastures on low P soils (i.e. lower than the critical P requirement of the legume grown). Higher returns of 12–24% may be possible when adding P fertiliser to already established grass/legume pastures on such soils. As these results suggest potential for significant returns from applying P fertiliser on legume pastures, it is recommended that research be conducted to better quantify the impacts of P fertiliser on productivity and profit. Research priorities include: quantifying the animal production and economic impact of fertilising legume-based pastures in the sub-tropics for currently used legumes; quantifying the comparative P requirements and responses of available legume varieties; understanding clay soil responses to applied P fertiliser; testing the P status of herds grazing in the Brigalow Belt; and quantifying the extent of other nutrient deficiencies (e.g. sulphur and potassium) for legume based pastures. Development and extension activities are required to demonstrate the commercial impacts of applying P fertiliser to legume based pastures.
Resumo:
Fusarium species associated with crown rot were isolated and identified from 409 wheat, barley or durum wheat crops from the eastern Australian grain belt between 1996 and 1999. Fusarium pseudograminearum was almost the only species isolated from crops in Queensland and New South Wales. F. pseudograminearum was also the most common species in Victoria and South Australia, but F. culmorum was frequently isolated in these states. F. culmorum accounted for more than 70% of isolates from the Victorian high-rainfall (> 500 mm) region and the South-East region of South Australia. F. culmorum comprised 18% of isolates from the Victorian medium-rainfall (350-500 mm) region, and 7% of isolates from each of the Victorian low-rainfall region and the Mid-North region of South Australia. F. avenaceum, F. crookwellense and F. graminearum were isolated very infrequently. The proportion of F. culmorum among isolates of Fusarium from districts in Victoria and South Australia was strongly correlated with climatic conditions around the end of the growing season, especially with rainfall in November.
Resumo:
This study used faecal pellets to investigate the broadscale distribution and diet of koalas in the mulgalands biogeographic region of south-west Queensland. Koala distribution was determined by conducting faecal pellet searches within a 30-cm radius of the base of eucalypts on 149 belt transects, located using a multi-scaled stratified sampling design. Cuticular analysis of pellets collected ffom 22 of these sites was conducted to identify the dietary composition of koalas within the region. Our data suggest that koala distribution is concentrated in the northern and more easterly regions of the study area, and appears to be strongly linked with annual rainfall. Over 50% of our koala records were obtained from non-riverine communities, indicating that koalas in the study area are not primarily restricted to riverine communities, as bas frequently been suggested. Cuticular analysis indicates that more than 90% of koala diet within the region consists of five eucalypt species. Our data highlights the importance of residual Tertiary landforms to koala conservation in the region.
Resumo:
Synthetic backcrossed-derived bread wheats (SBWs) from CIMMYT were grown in the Northwest of Mexico at Centro de Investigaciones Agrícolas del Noroeste (CIANO) and sites across Australia during three seasons. During three consecutive years Australia received “shipments” of different SBWs from CIMMYT for evaluation. A different set of lines was evaluated each season, as new materials became available from the CIMMYT crop enhancement program. These consisted of approximately 100 advanced lines (F7) per year. SBWs had been top and backcrossed to CIMMYT cultivars in the first two shipments and to Australian wheat cultivars in the third one. At CIANO, the SBWs were trialled under receding soil moisture conditions. We evaluated both the performance of each line across all environments and the genotype-by-environment interaction using an analysis that fits a multiplicative mixed model, adjusted for spatial field trends. Data were organised in three groups of multienvironment trials (MET) containing germplasm from shipment 1 (METShip1), 2 (METShip2), and 3 (METShip3), respectively. Large components of variance for the genotype × environment interaction were found for each MET analysis, due to the diversity of environments included and the limited replication over years (only in METShip2, lines were tested over 2 years). The average percentage of genetic variance explained by the factor analytic models with two factors was 50.3% for METShip1, 46.7% for METShip2, and 48.7% for METShip3. Yield comparison focused only on lines that were present in all locations within a METShip, or “core” SBWs. A number of core SBWs, crossed to both Australian and CIMMYT backgrounds, outperformed the local benchmark checks at sites from the northern end of the Australian wheat belt, with reduced success at more southern locations. In general, lines that succeeded in the north were different from those in the south. The moderate positive genetic correlation between CIANO and locations in the northern wheat growing region likely reflects similarities in average temperature during flowering, high evaporative demand, and a short flowering interval. We are currently studying attributes of this germplasm that may contribute to adaptation, with the aim of improving the selection process in both Mexico and Australia.
Resumo:
Two species of root-lesion nematode (predominantly Pratylenchus thornei but also P. neglectus) are widespread pathogens of wheat and other crops in Australia's northern grain belt, a subtropical region with deep, fertile clay soils and a summer-dominant rainfall pattern. Losses in grain yield from P. thornei can be as high as 70% for intolerant wheat cultivars. This review focuses on research which has led to the development of effective integrated management programs for these nematodes. It highlights the importance of correct identification in managing Pratylenchus species, reviews the plant breeding work done in developing tolerant and resistant cultivars, outlines the methods used to screen for tolerance and resistance, and discusses how planned crop sequencing with tolerant and partially resistant wheat cultivars, together with crops such as sorghum, sunflower, millets and canaryseed, can be used to reduce nematode populations and limit crop damage. The declining levels of soil organic matter in cropped soils are also discussed with reference to their effect on soil health and biological suppression of root-lesion nematodes.
Resumo:
Water availability is a key limiting factor in wheat production in the northern grain belt of Australia. Varieties with improved adaptation to such conditions are actively sought. The CIMMYT wheat line SeriM82 has shown a significant yield advantage in multi-environment screening trials in this region. The objective of this study was to identify the physiological basis of the adaptive traits underpinning this advantage. Six detailed experiments were conducted to compare the growth, development, and yield of SeriM82 with that of the adapted cultivar, Hartog. The experiments were undertaken in field environments that represented the range of moisture availability conditions commonly encountered by winter crops grown on the deep Vertosol soils of this region. The yield of SeriM82 was 6-28% greater than that of Hartog, and SeriM82 exhibited a stay-green phenotype by maintaining green leaf area longer during the grain-filling period in all environments where yield was significantly greater than Hartog. However, where the availability of deep soil moisture was limited, SeriM82 failed to exhibit significantly greater yield or to express the stay-green phenotype. Thus, the stay-green phenotype was closely associated with the yield advantage of SeriM82. SeriM82 also exhibited higher mean grain mass than Hartog in all environments. It is suggested that small differences in water use before anthesis, or greater water extraction from depth after anthesis, could underlie the stay-green phenotype. The inability of SeriM82 to exhibit stay-green and higher yield where deep soil moisture was depleted indicates that extraction of deep soil moisture is important.
Resumo:
A rich suite of pasture legumes and grasses have been released for the Queensland grain belt, particularly from forage evaluation programs carried out during the past 50 years (Gramshaw and Walker 1988; http://www.pi.csiro.au/ahpc/). Thus, there is an extensive and comprehensive knowledge of the adaptation of those species and adaptation is being extended widely - for example, to farmer groups in 'LeyGrain' workshops developed and delivered by the authors, and as written information (e.g. Lloyd et al. 2006; 2007a; 2007b) and on the website www.dpi.qld.gov.au. However, our knowledge is broad and, as we come to understand natural systems, their limitations and the extent of variation within those systems, it is equally clear that our knowledge of pasture plant adaptation is not as well defined as it needs to be. It is an interesting conflict - the more we understand, the more we begin to realise our lack of understanding. The appropriate species for sowing in different situations are discussed.
Resumo:
Difficulty with control of Queensland fruit fly with four cultivars of apples on the Granite Belt, Qld. Warnings that the insecticides dimethoate & fenthion might be removed from the market for apples, had been current for several years. Dimethoate was widely used as a post harvest control measure as well as an in-field treatment. Fenthion also had and still has in-field usage. The project attempted to find a replacement for these control measures.
Resumo:
Dairy farms located in the subtropical cereal belt of Australia rely on winter and summer cereal crops, rather than pastures, for their forage base. Crops are mostly established in tilled seedbeds and the system is vulnerable to fertility decline and water erosion, particularly over summer fallows. Field studies were conducted over 5 years on contrasting soil types, a Vertosol and Sodosol, in the 650-mm annual-rainfall zone to evaluate the benefits of a modified cropping program on forage productivity and the soil-resource base. Growing forage sorghum as a double-crop with oats increased total mean annual production over that of winter sole-crop systems by 40% and 100% on the Vertosol and Sodosol sites respectively. However, mean annual winter crop yield was halved and overall forage quality was lower. Ninety per cent of the variation in winter crop yield was attributable to fallow and in-crop rainfall. Replacing forage sorghum with the annual legume lablab reduced fertiliser nitrogen (N) requirements and increased forage N concentration, but reduced overall annual yield. Compared with sole-cropped oats, double-cropping reduced the risk of erosion by extending the duration of soil water deficits and increasing the time ground was under plant cover. When grown as a sole-crop, well fertilised forage sorghum achieved a mean annual cumulative yield of 9.64 and 6.05 t DM/ha on the Vertosol and Sodosol, respectively, being about twice that of sole-cropped oats. Forage sorghum established using zero-tillage practices and fertilised at 175 kg N/ha. crop achieved a significantly higher yield and forage N concentration than did the industry-standard forage sorghum (conventional tillage and 55 kg N/ha. crop) on the Vertosol but not on the Sodosol. On the Vertosol, mean annual yield increased from 5.65 to 9.64 t DM/ha (33 kg DM/kg N fertiliser applied above the base rate); the difference in the response between the two sites was attributed to soil type and fertiliser history. Changing both tillage practices and N-fertiliser rate had no affect on fallow water-storage efficiency but did improve fallow ground cover. When forage sorghum, grown as a sole crop, was replaced with lablab in 3 of the 5 years, overall forage N concentration increased significantly, and on the Vertosol, yield and soil nitrate-N reserves also increased significantly relative to industry-standard sorghum. All forage systems maintained or increased the concentration of soil nitrate-N (0-1.2-m soil layer) over the course of the study. Relative to sole-crop oats, alternative forage systems were generally beneficial to the concentration of surface-soil (0-0.1 m) organic carbon and systems that included sorghum showed most promise for increasing soil organic carbon concentration. We conclude that an emphasis on double-or summer sole-cropping rather than winter sole-cropping will advantage both farm productivity and the soil-resource base.
Resumo:
Khaya senegalensis (African mahogany or dry-zone mahogany) is a high-value hardwood timber species with great potential for forest plantations in northern Australia. The species is distributed across the sub-Saharan belt from Senegal to Sudan and Uganda. Because of heavy exploitation and constraints on natural regeneration and sustainable planting, it is now classified as a vulnerable species. Here, we describe the development of microsatellite markers for K. senegalensis using next-generation sequencing to assess its intra-specific diversity across its natural range, which is a key for successful breeding programs and effective conservation management of the species. Next-generation sequencing yielded 93943 sequences with an average read length of 234bp. The assembled sequences contained 1030 simple sequence repeats, with primers designed for 522 microsatellite loci. Twenty-one microsatellite loci were tested with 11 showing reliable amplification and polymorphism in K. senegalensis. The 11 novel microsatellites, together with one previously published, were used to assess 73 accessions belonging to the Australian K. senegalensis domestication program, sampled from across the natural range of the species. STRUCTURE analysis shows two major clusters, one comprising mainly accessions from west Africa (Senegal to Benin) and the second based in the far eastern limits of the range in Sudan and Uganda. Higher levels of genetic diversity were found in material from western Africa. This suggests that new seed collections from this region may yield more diverse genotypes than those originating from Sudan and Uganda in eastern Africa.
Resumo:
An observational study was undertaken to measure odour and dust (PM10 and PM2.5) emission rates and identify non-methane volatile organic compounds (NMVOCs) and odorants in the exhaust air from two tunnel-ventilated layer-chicken sheds that were configured with multi-tiered cages and manure belts. The study sites were located in south-eastern Queensland and the West Gippsland region of Victoria, Australia. Samples were collected in summer and winter on sequential days across the manure-belt cleaning cycle. Odour emissions ranged from 58 to 512 ou/s per 1000 birds (0.03-0.27 ou/s.kg) and dust emission rates ranged 0.014-0.184 mg/s per 1000 birds for PM10 and 0.001-0.190 mg/s per 1000 birds for PM2.5. Twenty NMVOCs were identified, including three that were also identified as odorants using thermal desorption-gas chromatography-mass spectrometry/olfactometry analysis. Odour emission rates were observed to vary with the amount of manure accumulation on the manure belts, being lowest 2-4 days after removing manure. Odour emission rates were also observed to vary with diurnal and seasonal changes in ventilation rate. Dust emissions were observed to increase with ventilation rate but not with manure accumulation. Some NMVOCs were identified at both farms and in different seasons whereas others were observed only at one farm or in one season, indicating that odorant composition was influenced by farm-specific practices and season.
Resumo:
Climate projections over the next two to four decades indicate that most of Australia’s wheat-belt is likely to become warmer and drier. Here we used a shire scale, dynamic stress-index model that accounts for the impacts of rainfall and temperature on wheat yield, and a range of climate change projections from global circulation models to spatially estimate yield changes assuming no adaptation and no CO2 fertilisation effects. We modelled five scenarios, a baseline climate (climatology, 1901–2007), and two emission scenarios (“low” and “high” CO2) for two time horizons, namely 2020 and 2050. The potential benefits from CO2 fertilisation were analysed separately using a point level functional simulation model. Irrespective of the emissions scenario, the 2020 projection showed negligible changes in the modelled yield relative to baseline climate, both using the shire or functional point scale models. For the 2050-high emissions scenario, changes in modelled yield relative to the baseline ranged from −5 % to +6 % across most of Western Australia, parts of Victoria and southern New South Wales, and from −5 to −30 % in northern NSW, Queensland and the drier environments of Victoria, South Australia and in-land Western Australia. Taking into account CO2 fertilisation effects across a North–south transect through eastern Australia cancelled most of the yield reductions associated with increased temperatures and reduced rainfall by 2020, and attenuated the expected yield reductions by 2050.
Resumo:
The forest tree species Khaya senegalensis (Desr.) A. Juss. occurs in a belt across 20 African countries from Senegal-Guinea to Sudan-Uganda where it is a highly important resource. However, it is listed as Vulnerable (IUCN 2015-3). Since introduction in northern Australia around 1959, the species has been planted widely, yielding high-value products. The total area of plantations of the species in Australia exceeds 15,000 ha, mostly planted in the Northern Territory since 2006, and includes substantial areas across 60-70 woodlots and industrial plantations established in north-eastern Queensland since the early-1990s and during 2005-2007 respectively. Collaborative conservation and tree improvement by governments began in the Northern Territory and Queensland in 2001 based on provenance and other trials of the 1960s-1970s. This work has developed a broad base of germplasm in clonal seed orchards, hedge gardens and trials (clone and progeny). Several of the trials were established collaboratively on private land. Since the mid-2000s, commercial growers have introduced large numbers of provenance-bulk and individual-tree seedlots to establish industrial plantations and trials, several of the latter in collaboration with the Queensland Government. Provenance bulks (>140) and families (>400) from 17 African countries are established in Australia, considered the largest genetic base of the species in a single country outside Africa. Recently the annual rate of industrial planting of the species in Australia has declined, and R&D has been suspended by governments and reduced by the private sector. However, new commercial plantings in the Northern Territory and Queensland are proposed. In domesticating a species, the strategic importance of a broad genetic base is well known. The wide range of first- and advanced-generation germplasm of the species established in northern Australia and documented in this paper provides a sound basis for further domestication and industrial plantation and woodlot expansion, when investment conditions are favourable