11 resultados para Knowledge production

em eResearch Archive - Queensland Department of Agriculture


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A successful supply chain must delivery the right product, value and satisfaction to the end customer, and profitability for its participants. Critical to getting the product right is the practices used to produce and maintain product quality through the supply chain from production to sale to the end customer. This paper describes the approach used by a R&D team to add value to supply chains through improving knowledge and practices. The desired outcome is better produce quality for consumers and more control and less wastage for chain participants. The team worked with specific supply chains to identify areas for improvement and to develop, test and implement improved practices. The knowledge gained was communicated to the industry to gain wider adoption of results. Three conditions were identified as critical for practice change - motivation, knowledge, and capacity for change. For improvement in practices to occur, a business must be motivated and have the knowledge and capacity to improve. Two case studies of working with Australian supply chains (mango and melons) are presented to illustrate our participatory methodology. A key activity is monitoring produce quality and handling practices and conditions to demonstrate to participants the points where quality deterioration occurs in the supply chain. This participatory approach is successful because working with supply chain participants generates knowledge and solutions to real problems. It enables the participants to observe the effect of handling practices and conditions on produce quality, gain knowledge and assess the benefits of improvements. Where existing knowledge is not present, research is conducted to fill the knowledge gaps. IV International Conference on Managing Quality in Chains - The Integrated View on Fruits and Vegetables Quality

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review of grader grass (Themeda quadrivalvis) attempts to collate current knowledge and identify knowledge gaps that may require further research. Grader grass is a tropical annual grass native to India that is now spread throughout many of the tropical regions of the world. In Australia, it has spread rapidly since its introduction in the 1930s and is now naturalised in the tropical areas of Queensland, the Northern Territory and Western Australia and extends south along the east coast to northern New South Wales. It is a vigorous grass with limited palatability, that is capable of invading native and improved pastures, cropping land and protected areas such as state and national parks. Grader grass can form dense monocultures that reduce biodiversity, decrease animal productivity and increase the fire hazard in the seasonally dry tropics. Control options are based on herbicides, grazing management and slashing, while overgrazing appears to favour grader grass. The effect of fire on grader grass is inconclusive and needs to be defined. Little is known about the biology and impacts of grader grass in agricultural and protected ecosystems in Australia. In particular, information is needed on soil seed bank longevity, seed production, germination and growth, which would allow the development of management strategies to control this weedy grass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The north Queensland banana industry is under pressure from government and community expectations to exhibit good environmental stewardship. The industry is situated on the high-rainfall north Queensland coast adjacent to 2 natural icons, the Great Barrier Reef to the east and World Heritage-listed rain forest areas to the west. The main environmental concern is agricultural industry pollutants harming the Great Barrier Reef. In addition to environmental issues the banana industry also suffers financial pressure from declining margins and production loss from tropical cyclones. As part of a broader government strategy to reduce land-based pollutants affecting the Great Barrier Reef, the formation of a pilot banana producers group to address these environmental and economic pressures was facilitated. Using an integrated farming systems approach, we worked collaboratively with these producers to conduct an environmental risk assessment of their businesses and then to develop best management practices (BMP) to address environmental concerns. We also sought input from technical experts to provide increased rigour for the environmental risk assessment and BMP development. The producers' commercial experience ensured new ideas for improved sustainable practices were constantly assessed through their profit-driven 'filter' thus ensuring economic sustainability was also considered. Relying heavily on the producers' knowledge and experience meant the agreed sustainable practices were practical, relevant and financially feasible for the average-sized banana business in the region. Expert input and review also ensured that practices were technically sound. The pilot group producers then implemented and adapted selected key practices on their farms. High priority practices addressed by the producers group included optimizing nitrogen fertilizer management to reduce runoff water nitrification, developing practical ground cover management to reduce soil erosion and improving integrated pest management systems to reduce pesticide use. To facilitate wider banana industry understanding and adoption of the BMP's developed by the pilot group, we conducted field days at the farms of the pilot group members. Information generated by the pilot group has had wider application to Australian horticulture and the process has been subsequently used with the north Queensland sugar industry. Our experiences have shown that integrated farming systems methodologies are useful in addressing complex issues like environmental and economic sustainability. We have also found that individual horticulture businesses need on-going technical support for change to more sustainable practices. One-off interventions have little impact, as farm improvement is usually an on-going incremental process. A key lesson from this project has been the need to develop practical, farm scale economic tools to clarify and demonstrate the financial impact of alternative management practices. Demonstrating continued profitability is critical to encourage widespread industry adoption of environmentally sustainable practices

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are more than 10,000 small-scale fish farms in PNG producing tilapia, carp or trout for home consumption and sale. Interest in aquaculture is growing rapidly, and the government has given high priority to aquaculture development, in recognition of its potential contribution to achieving food security particularly in the inland areas. Significant constraints include lack of capability within management agencies to identify appropriate sites for pond development, inadequate supply and poor quality of fingerlings, limited availability and high cost of pond fertilisers and suitable feeds, and a general lack of knowledge and training on aquaculture husbandry skills.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The global importance of grasslands is indicated by their extent; they comprise some 26% of total land area and 80% of agriculturally productive land. The majority of grasslands are located in tropical developing countries where they are particularly important to the livelihoods of some one billion poor peoples. Grasslands clearly provide the feed base for grazing livestock and thus numerous high-quality foods, but such livestock also provide products such as fertilizer, transport, traction, fibre and leather. In addition, grasslands provide important services and roles including as water catchments, biodiversity reserves, for cultural and recreational needs, and potentially a carbon sink to alleviate greenhouse gas emissions. Inevitably, such functions may conflict with management for production of livestock products. Much of the increasing global demand for meat and milk, particularly from developing countries, will have to be supplied from grassland ecosystems, and this will provide difficult challenges. Increased production of meat and milk generally requires increased intake of metabolizable energy, and thus increased voluntary intake and/or digestibility of diets selected by grazing animals. These will require more widespread and effective application of improved management. Strategies to improve productivity include fertilizer application, grazing management, greater use of crop by-products, legumes and supplements and manipulation of stocking rate and herbage allowance. However, it is often difficult to predict the efficiency and cost-effectiveness of such strategies, particularly in tropical developing country production systems. Evaluation and on-going adjustment of grazing systems require appropriate and reliable assessment criteria, but these are often lacking. A number of emerging technologies may contribute to timely low-cost acquisition of quantitative information to better understand the soil-pasture-animal interactions and animal management in grassland systems. Development of remote imaging of vegetation, global positioning technology, improved diet markers, near IR spectroscopy and modelling provide improved tools for knowledge-based decisions on the productivity constraints of grazing animals. Individual electronic identification of animals offers opportunities for precision management on an individual animal basis for improved productivity. Improved outcomes in the form of livestock products, services and/or other outcomes from grasslands should be possible, but clearly a diversity of solutions are needed for the vast range of environments and social circumstances of global grasslands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Significant interactions have been demonstrated between production factors and postharvest quality of fresh fruit. Accordingly, there is an attendant need for adaptive postharvest actions to modulate preharvest effects. The most significant preharvest effects appear to be mediated through mineral nutrition influences on the physical characteristics of fruit. Examples of specific influencers include fertilisers, water availability, rootstock, and crop load effects on fruit quality attributes such as skin colour, susceptibility to diseases and physiological disorders, and fruit nutritional composition. Also, rainfall before and during harvest can markedly affect fruit susceptibility to skin blemishes, physical damage, and diseases. Knowledge of preharvest-postharvest interactions can help determine the basis for variability in postharvest performance and thereby allow refinement of postharvest practices to minimise quality loss after harvest. This knowledge can be utilised in predictive management systems. Such systems can benefit from characterisation of fruit nutritional status, particularly minerals, several months before and/or at harvest to allow informed decisions on postharvest handling and marketing options. Other examples of proactive management practices include adjusting harvesting and packing systems to account for rainfall effects before and/or during harvest. Improved understanding of preharvest-postharvest interactions is contributing to the delivery of consistently higher quality of fruit to consumers. This paper focuses on the state of knowledge for sub-tropical and tropical fruits, in particular avocado and mango.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cross-sectional study was conducted between October 2011 and March 2012 in two major pig producing provinces in the Philippines. Four hundred and seventy one pig farms slaughtering finisher pigs at government operated abattoirs participated in this study. The objectives of this study were to group: (a) smallholder (S) and commercial (C) production systems into patterns according to their herd health providers (HHPs), and obtain descriptive information about the grouped S and C production systems; and (b) identify key HHPs within each production system using social network analysis. On-farm veterinarians, private consultants, pharmaceutical company representatives, government veterinarians, livestock and agricultural technicians, and agricultural supply stores were found to be actively interacting with pig farmers. Four clusters were identified based on production system and their choice of HHPs. Differences in management and biosecurity practices were found between S and C clusters. Private HHPs provided a service to larger C and some larger S farms, and have little or no interaction with the other HHPs. Government HHPs provided herd health service mainly to S farms and small C farms. Agricultural supply stores were identified as a dominant solitary HHP and provided herd health services to the majority of farmers. Increased knowledge of the routine management and biosecurity practices of S and C farmers and the key HHPs that are likely to be associated with those practices would be of value as this information could be used to inform a risk-based approach to disease surveillance and control. © 2014 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Significant interactions have been demonstrated between production factors and postharvest quality of fresh fruit. Accordingly, there is an attendant need for adaptive postharvest actions to modulate preharvest effects. The most significant preharvest effects appear to be mediated through mineral nutrition influences on the physical characteristics of fruit. Examples of specific influencers include fertilisers, water availability, rootstock, and crop load effects on fruit quality attributes such as skin colour, susceptibility to diseases and physiological disorders, and fruit nutritional composition. Also, rainfall before and during harvest can markedly affect fruit susceptibility to skin blemishes, physical damage, and diseases. Knowledge of preharvest-postharvest interactions can help determine the basis for variability in postharvest performance and thereby allow refinement of postharvest practices to minimise quality loss after harvest. This knowledge can be utilised in predictive management systems. Such systems can benefit from characterisation of fruit nutritional status, particularly minerals, several months before and/or at harvest to allow informed decisions on postharvest handling and marketing options. Other examples of proactive management practices include adjusting harvesting and packing systems to account for rainfall effects before and/or during harvest. Improved understanding of preharvest-postharvest interactions is contributing to the delivery of consistently higher quality of fruit to consumers. This paper focuses on the state of knowledge for sub-tropical and tropical fruits, in particular avocado and mango.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The prospect of climate change has revived both fears of food insecurity and its corollary, market opportunities for agricultural production. In Australia, with its long history of state-sponsored agricultural development, there is renewed interest in the agricultural development of tropical and sub-tropical northern regions. Climate projections suggest that there will be less water available to the main irrigation systems of the eastern central and southern regions of Australia, while net rainfall could be sustained or even increase in the northern areas. Hence, there could be more intensive use of northern agricultural areas, with the relocation of some production of economically important commodities such as vegetables, rice and cotton. The problem is that the expansion of cropping in northern Australia has been constrained by agronomic and economic considerations. The present paper examines the economics, at both farm and regional level, of relocating some cotton production from the east-central irrigation areas to the north where there is an existing irrigation scheme together with some industry and individual interest in such relocation. Integrated modelling and expert knowledge are used to examine this example of prospective climate change adaptation. Farm-level simulations show that without adaptation, overall gross margins will decrease under a combination of climate change and reduction in water availability. A dynamic regional Computable General Equilibrium model is used to explore two scenarios of relocating cotton production from south east Queensland, to sugar-dominated areas in northern Queensland. Overall, an increase in real economic output and real income was realized when some cotton production was relocated to sugar cane fallow land/new land. There were, however, large negative effects on regional economies where cotton production displaced sugar cane. It is concluded that even excluding the agronomic uncertainties, which are not examined here, there is unlikely to be significant market-driven relocation of cotton production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is uncertainty over the potential changes to rainfall across northern Australia under climate change. Since rainfall is a key driver of pasture growth, cattle numbers and the resulting animal productivity and beef business profitability, the ability to anticipate possible management strategies within such uncertainty is crucial. The Climate Savvy Grazing project used existing research, expert knowledge and computer modelling to explore the best-bet management strategies within best, median and worse-case future climate scenarios. All three scenarios indicated changes to the environment and resources upon which the grazing industry of northern Australia depends. Well-adapted management strategies under a changing climate are very similar to best practice within current climatic conditions. Maintaining good land condition builds resource resilience, maximises opportunities under higher rainfall years and reduces the risk of degradation during drought and failed wet seasons. Matching stocking rate to the safe long-term carrying capacity of the land is essential; reducing stock numbers in response to poor seasons and conservatively increasing stock numbers in response to better seasons generally improves profitability and maintains land in good condition. Spelling over the summer growing season will improve land condition under a changing climate as it does under current conditions. Six regions were included within the project. Of these, the Victoria River District in the Northern Territory, Gulf country of Queensland and the Kimberley region of Western Australia had projections of similar or higher than current rainfall and the potential for carrying capacity to increase. The Alice Springs, Maranoa-Balonne and Fitzroy regions had projections of generally drying conditions and the greatest risk of reduced pasture growth and carrying capacity. Encouraging producers to consider and act on the risks, opportunities and management options inherent in climate change was a key goal of the project. More than 60,000 beef producers, advisors and stakeholders are now more aware of the management strategies which build resource resilience, and that resilience helps buffer against the effects of variable and changing climatic conditions. Over 700 producers have stated they have improved confidence, skills and knowledge to attempt new practices to build resilience. During the course of the project, more than 165 beef producers reported they have implemented changes to build resource and business resilience.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Queensland the subtropical strawberry (Fragaria ×ananassa) breeding program aims to combine traits into new genotypes that increase production efficiency. The contribution of individual plant traits to cost and income under subtropical Queensland conditions has been investigated. The study adapted knowledge of traits and the production and marketing system to assess the economic impact (gross margin) of new cultivars on the system, with the overall goal of improving the profitability of the industry through the release of new strawberry cultivars. Genotypes varied widely in their effect on gross margin, from 48% above to 10% below the base value. The advantage of a new genotype was also affected by the proportion of total area allocated to the new genotype. The largest difference in gross margin between that at optimum allocation (8% increase in gross margin) and an all of industry allocation (20% decrease in gross margin) of area to the genotype was 28%. While in other cases the all of industry allocation was also the optimum allocation, with one genotype giving a 48% benefit in gross margin.