3 resultados para Knock out
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Non-parametric difference tests such as triangle and duo-trio tests traditionally are used to establish differences or similarities between products. However they only supply the researcher with partial answers and often further testing is required to establish the nature, size and direction of differences. This paper looks at the advantages of the difference from control (DFC) test (also known as degree of difference test) and discusses appropriate applications of the test. The scope and principle of the test, panel composition and analysis of results are presented with the aid of suitable examples. Two of the major uses of the DFC test are in quality control and shelf-life testing. The role DFC takes in these areas and the use of other tests to complement the testing is discussed. Controls or standards are important in both these areas and the use of standard products, mental and written standards and blind controls are highlighted. The DFC test has applications in products where the duo-trio and triangle tests cannot be used because of the normal heterogeneity of the product. While the DFC test is a simple difference test it can be structured to give the researcher more valuable data and scope to make informed decisions about their product.
Resumo:
To enhance the sustainability of marine finfish aquaculture in the Asia-Pacific (AP) region by improving hatchery production technology and facilitating the uptake of compounded feeds for grow-out.
Resumo:
Poultry grown on litter floors are in contact with their own waste products. The waste material needs to be carefully managed to reduce food safety risks and to provide conditions that are comfortable and safe for the birds. Water activity (Aw) is an important thermodynamic property that has been shown to be more closely related to microbial, chemical and physical properties of natural products than moisture content. In poultry litter, Aw is relevant for understanding microbial activity; litter handling and rheological properties; and relationships between in-shed relative humidity and litter moisture content. We measured the Aw of poultry litter collected throughout a meat chicken grow-out (from fresh pine shavings bedding material to day 52) and over a range of litter moisture content (10–60%). The Aw increased non-linearly from 0.71 to 1.0, and reached a value of 0.95 when litter moisture content was only 22–33%. Accumulation of manure during the grow-out reduced Aw for the same moisture content. These results are relevant for making decisions regarding litter re-use in multiple grow-outs as well as setting targets for litter moisture content to minimise odour, microbial risks and to ensure necessary litter physical conditions are maintained during a grow-out. Methods to predict Aw in poultry litter from moisture content are proposed.