3 resultados para KETAMINE PRETREATMENT
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Partial least squares regression models on NIR spectra are often optimised (for wavelength range, mathematical pretreatment and outlier elimination) in terms of calibration terms of validation performance with reference to totally independent populations.
Resumo:
An aging electricity distribution system and reduced availability of naturally durable tropical hardwoods in Australia will combine in the next decade to produce a major shortage of poles. One approach to mitigating this shortage is to utilize lower durability species and improve the penetration of preservatives into the refractory heartwood by introducing additional pretreatment processes. A potential method for improving preservative penetration in the critical ground-line zone is through-boring. This process, in which holes are drilled through the pole perpendicular to the grain in the ground-line zone, is widely used in the western United States for treatment of Douglas-fir and may be Suitable for many Australian wood species. The potential for improving heartwood penetration in eucalypts with alkaline-copper-quaternary (ACQ) compound was assessed on heartwood specimens from four species (Eucalyptus cloeziana F.Muell., E. grandis W.Hill ex Maiden, E. obliqua L'Her. and E. pellita F.Muell.) and Lophostemon confertus (R.Br.) Peter G.Wilson & J.T.Wateril). Longitudinal ACQ penetration was extremely shallow in L. confertus and only slightly better in E. cloeziana. Longitudinal penetration was good in both E. obliqua and E. pellita, although there was some variation in treatment results with length of pressure period. The results suggest that through-boring might be a reasonable approach for achieving heartwood penetration in some Eucalyptus species, although further studies are required to assess additional treatment schedules and to determine the effects of the process oil flexural properties of the poles.
Resumo:
In order to meet the world’s growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. The first-generation biofuels, derived from starches of edible feedstocks, such as corn, create competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose) generated on marginal agricultural land will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia, and Angophora are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lend itself toward natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall.