3 resultados para Kölner Dom.
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The present experiment was conducted to determine the efficiency of microbial protein production in the rumen and intake by cattle fed high-molasses diets. Intake and microbial crude protein (MCP) production were measured along with the concentration of rumen ammonia-nitrogen (N) and volatile fatty acids (VFA), pH and the rate of digestion of roughage in the rumen. Eight Brahman crossbred steers weighing 211 ± 19.3 (± s.d.) kg were used in a double 4 × 4 Latin square design. Steers were allocated to one of four total mixed rations: control (pangola hay only), 25M (25% molasses/urea mix + 75% hay), 50M (50% molasses/urea + 50% hay), and 75M (75% molasses/urea + 25% hay). The production and efficiency of production of MCP (EMCP) of the diet increased quadratically as the level of molasses in the diet increased. The EMCP from the molasses/urea mix was estimated as 166 g MCP/kg digestible organic matter (DOM), a relatively high value. Intake of dry matter (DM) and DOM increased quadratically, reaching a peak when molasses was ~50% (as fed) of the ration. Digestibility of DM increased quadratically and that of neutral detergent fibre decreased linearly with increasing level of molasses in the diet. Molasses inclusion in the diet had no effect on rumen pH, ammonia and VFA concentration in the rumen fluid, plasma urea-N, urine pH or ruminal fractional outflow rate of ytterbium-labelled particles and Cr-EDTA. It was concluded that a diet with a high level of molasses (>50%) and supplemented with adequate N had high EMCP, and that low MCP production was not a factor limiting intake or performance of cattle consuming high-molasses diets.
Resumo:
The present experiment was conducted to determine the efficiency of microbial protein production in the rumen and intake by cattle fed high-molasses diets. Intake and microbial crude protein (MCP) production were measured along with the concentration of rumen ammonia-nitrogen (N) and volatile fatty acids (VFA), pH and the rate of digestion of roughage in the rumen. Eight Brahman crossbred steers weighing 211 ± 19.3 (± s.d.) kg were used in a double 4 x 4 Latin square design. Steers were allocated to one of four total mixed rations: control (pangola hay only), 25M (25% molasses/urea mix + 75% hay), 50M (50% molasses/urea + 50% hay), and 75M (75% molasses/urea + 25% hay). The production and efficiency of production of MCP (EMCP) of the diet increased quadratically as the level of molasses in the diet increased. The EMCP from the molasses/urea mix was estimated as 166 g MCP/kg digestible organic matter (DOM), a relatively high value. Intake of dry matter (DM) and DOM increased quadratically, reaching a peak when molasses was ∼50% (as fed) of the ration. Digestibility of DM increased quadratically and that of neutral detergent fibre decreased linearly with increasing level of molasses in the diet. Molasses inclusion in the diet had no effect on rumen pH, ammonia and VFA concentration in the rumen fluid, plasma urea-N, urine pH or ruminal fractional outflow rate of ytterbium-labelled particles and Cr-EDTA. It was concluded that a diet with a high level of molasses (>50%) and supplemented with adequate N had high EMCP, and that low MCP production was not a factor limiting intake or performance of cattle consuming high-molasses diets.
Resumo:
Cattle consuming pastures low in protein have low liveweight gain due to low rumen degradable protein (RDP) supply and thus low microbial crude protein (MCP) production and efficiency of MCP production [EMCP, g MCP/kg digestible organic matter (DOM)]. Nitrogen supplements can increase MCP production and EMCP of cattle grazing low protein pastures. The objective of this study was to compare the effects of supplementation with a non-protein-N source (NPN), in this case urea and ammonium sulfate (US), with a single-cell algal protein source (Spirulina platensis), on intake, microbial protein supply and digestibility in cattle. Nine cannulated Bos indicus steers [initial liveweight 250.1 ± 10.86 (s.d.) kg] were fed Mitchell grass hay (Astrebla spp; 6.1 g N, 746 g NDF/kg DM) ad libitum and were supplied with increasing amounts of US (0, 6, 13, 19 and 33 g US DM/kg hay DM) or Spirulina 0, 0.5, 1.4, 2.5 and 6.1 g Spirulina DM/kg W.day in an incomplete Latin square design. The response of MCP production and EMCP to increasing amounts of the two supplements was different, with a greater response to Spirulina evident. The MCP production was predicted to peak at 140 and 568 g MCP/day (0.64 and 2.02 g MCP/kg W.day) for the US and Spirulina supplements, respectively. The highest measured EMCP were 92 and 166 g MCP/kg DOM for the US and Spirulina treatments at 170 and 290 g RDP/kg DOM, respectively, or a Spirulina intake of 5.7 g DM/kg W.day. Increasing RDP intake from US and Spirulina resulted in an increase in Mitchell grass hay intake and rumen NH3-N concentration and reduced the retention time of liquid and particulate markers and digesta DM, NDF and lignin in the rumen with greater changes due to Spirulina. Total DM intake peaked at a Spirulina supplement level of 4.6 g Spirulina DM/kg W.day with a 2.3-fold higher DOM intake than Control steers. Rumen NH3-N concentrations reached 128 and 264 mg NH3-N/L for the US and Spirulina treatments with a significant increase in the concentration of branched-chain fatty acids for the Spirulina treatment. The minimum retention time of liquid (Cr-EDTA; 23 and 13 h) and particulate (Yb; 34 and 22 h) markers in the rumen were significantly lower for Spirulina compared with US and lower than unsupplemented animals at 24 and 34 h for Cr-EDTA and Yb, respectively. Spirulina could be provided safely at much higher N intakes than NPN supplements. The results suggest that, at an equivalent RDP supply, Spirulina provided greater increases than US in MCP production, EMCP and feed intake of Bos indicus cattle consuming low protein forage and could also be fed safely at higher levels of N intake.