3 resultados para Jacobson, Jeff
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Microbial inhabitants of soils are important to ecosystem and planetary functions, yet there are large gaps in our knowledge of their diversity and ecology. The ‘Biomes of Australian Soil Environments’ (BASE) project has generated a database of microbial diversity with associated metadata across extensive environmental gradients at continental scale. As the characterisation of microbes rapidly expands, the BASE database provides an evolving platform for interrogating and integrating microbial diversity and function.
Resumo:
Awnless barnyard grass, feathertop Rhodes grass, and windmill grass are important weeds in Australian cotton systems. In October 2014, an experiment was established to investigate the phenological plasticity of these species. Seed of these species were planted in a glasshouse every four weeks and each cohort grown for 6 months. A developmental response to day length was observed in barnyard grass but not in the other species. Days to maturity increased with each planting for feathertop Rhodes and windmill grass for the first six cohorts. Barnyard grass showed a similar pattern in growth for seeds planted from October to December with an increase in the onset of maturity from 51 to 58 days. However, the onset of maturity for cohorts planted between January and March decreased to between 50 and 52 days. All species had a decrease in the total number of panicles produced from the first four plantings. Feathertop Rhodes grass planted in October produced 41 panicles compared to those planted at the end of December producing 30 panicles, barnyard grass had a decrease from 99 to 47 panicles and windmill grass 37 to 15 panicles on average. By comparing the development of these key weed species over 12 months, detailed information on the phenological plasticity of these species will be obtained. This information will contribute to more informed management decisions by improving our understanding of appropriate weed control timings or herbicide rates depending on weed emergence and development.
Resumo:
Integration of multiple herbicide-resistant genes (trait stacking) into crop plants would allow over the top application of herbicides that are otherwise fatal to crops. The US has just approved Bollgard II® XtendFlex™ cotton which has dicamba, glyphosate and glufosinate resistance traits stacked. The pace of glyphosate resistance evolution is expected to be slowed by this technology. In addition, over the top application of two more herbicides may help to manage hard to kill weeds in cotton such as flax leaf fleabane and milk thistle. However, there are some issues that need to be considered prior to the adoption of this technology. Wherever herbicide tolerant technology is adopted, volunteer crops can emerge as a weed problem, as can herbicide resistant weeds. For cotton, seed movement is the most likely way for resistant traits to move around. Management of multiple stack volunteers may add additional complexity to volunteer management in cotton fields and along roadsides. This paper attempts to evaluate the pros and cons of trait stacking technology by analysing the available literature in other crop growing regions across the world. The efficacy of dicamba and glufosinate on common weeds of the Australian cotton system, herbicide resistance evolution, synergy and antagonisms due to herbicide mixtures, drift hazards and the evolution of herbicide resistance to glyphosate, glufosinate and dicamba were analysed based on the available literature.