4 resultados para Interception of communications
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Blackwood (Acacia melanoxylon R. Br.) is a valuable leguminous cabinetwood species which is commonly found as a canopy or subcanopy tree in a broad range of mixed-species moist forests on tablelands and coastal escarpments in eastern Australia. This paper reports on the competitive light environment of a commercially valuable multi-species regrowth forest in NW Tasmania, in order to define some of the functional interactions and competitive dynamics of these stands. Comparative observations were made of the internal forest light environment in response to small-gap silvicultural treatments, in a young regenerative mix of three codominant tree species. Light measurements were made during periods of maximum external irradiance of the regrowth Eucalyptus obliqua/A. melanoxylon forest canopy at age 10.5 years. This was at a time of vigourous stand development, 4.5 years following the application of three experimental silvicultural treatments whose effects were observed in comparison with an untreated canopy sample designed as a control. Minimal irradiance was observed within and beneath the dense subcanopy of the native nurse species (Pomaderris apetala) which closely surrounds young blackwood regeneration. Unlike current plantation nurse systems, the dense foliage of the native broadleaved Pomaderris all but eliminated direct side-light and low-angle illumination of the young blackwood, from the beginning of tree establishment. The results demonstrated that retention of these densely stocked native codominants effectively suppressed both size and frequency of blackwood branches on the lower bole, through effective and persistent interception of sunlight. Vigorous young blackwood crowns later overtopped the codominant nurse species, achieving a predictable height of branch-free bole. This competitive outcome offers a valuable tool for management of blackwood crown dynamics, stem form and branch habit through manipulation of light environment in young native regrowth systems. Results demonstrate that effective self-pruning in the lower bole of blackwood is achieved through a marked reduction in direct and diffuse sunlight incident on the lower crown, notably to less than 10-15% of full sunlight intensity during conditions of maximum insolation. The results also contain insights for the improved design of mixed-species plantation nurse systems using these or functionally similar species' combinations. Based on evidence presented here for native regrowth forest, plantation nurse systems for blackwood will need to achieve 85-90% interception of external side-light during early years of tree development if self-pruning is to emulate the results achieved in the native nurse system.
Resumo:
This report provides an evaluation of the behaviours and purchasing drivers of key sweetpotato consumers defined by Nielsen consumer research as Established Couples (two or more adults with no children 17 and under, and head of house 35-59), Senior Couples (two or more adults with no children 17 or under, and head of house 60 or over), and Independent Singles (one person household 35 or over, no children 17 or under). Research was qualitative in nature. Methods used included focus groups, depth interviews and shop-a-longs. The report found that preferences for sweetpotato amongst these groups were varied. In general a smaller torpedo shaped vegetable was valued for ease of preparation and the convenience of being of sufficient size for a meal for two. Satisfaction with sweetpotato was high with negative comments on quality exceedingly rare within discussions. However, shop-a-longs revealed that some quality issues were apparent at retail such as withered product, pitting and occasionally damage. A display with stock resting in any amount of water was a barrier to purchase for consumers and this was apparent on two out 15 occasions. A high quality sweetpotato was of a deep orange/red colour, had a smooth skin and was extremely dense and hard. An inferior sweetpotato was wrinkly, spongy, pitted and damaged. Awareness of sweetpotato was a relatively recent phenomenon amongst the respondents of this study with most recalling eating the vegetable in the last five to 10 years. Life-time eating patterns emerged as a consequence of childhood food experiences such as growing up with a ‘meat and three’ veg philosophy and traditional Australian meals. However, this was dependent on cultural background and those with ties to diverse cultures were more likely to have always known of the vegetable. Sweetpotato trial and consumption coincided with a breaking away from these traditional patterns, or was integrated into conventional meals such as a baked vegetable to accompany roasts. Increased health consciousness also led to awareness of the vegetable. A primary catalyst for consumption within the Established and Senior Couples groups was the health benefits associated with sweetpotato. Consumers had very little knowledge of the specific health properties of the vegetable and were surprised at the number of benefits consumption provided. Sweetpotato was important for diabetics for its low Glycemic Index status. Top-of-the-mind awareness of the vegetable resulted from the onset of the disease. Increasing fibre was a key motive for this demographic and this provided a significant link between consumption and preventing bowel cancer. For those on a weight loss regime, sweetpotato was perceived as a tasty, satisfying food that was low in carbohydrates. Swapping behaviours where white potato was replaced by sweetpotato was often a response to these health concerns. Other health properties mentioned by participants through the course of the research included the precursor β-carotene and Vitamins A & C. The sweetpotato was appreciated for its hedonic and timesaving qualities. For consumers with a high involvement in food, the vegetable was valued for its versatility in meals. These consumers took pride in cooking and the flavour and texture of sweetpotato lent itself to a variety of meals such as soups, salads, roasts, curries, tagines and so on. Participants who had little time or desire to prepare and cook meals valued sweetpotato because it was an easy way to add colour and variety to the plate and because including an orange vegetable to meals is a shortcut to ensuring vitamin intake. Several recommendations are made to the sweetpotato industry. • Vigorously promote the distinct nutritional and health properties of sweetpotatoes, particularly if they can be favourably compared to other vegetables or foods • Promote the salient properties to specific targets such as diabetics, those that are at risk to bowel cancer, and those embarking on a weight-loss regime. Utilise specialist channels of communication such as diabetic magazines and websites • Promote styles of cooking of sweetpotato that would appeal to traditionalists such as roasts and BBQs • Promote the vegetable as a low maintenance vegetable, easy to store, easy to cook and particularly focusing on it as a simple way to boost the appearance and nutritional value of meals. • Promote the vegetable to high food involvement consumers through exotic recipes and linking it to feelings of accomplishment with cooking • Promote the versatility of the vegetable • Devise promotions that link images and tone of communications with enjoying life to the fullest, having time to enjoy family and grandchildren, and of partaking in social activities • Educate retailers on consumer perceptions of quality and ensuring moisture and mould is not present at displays Qualitative information while providing a wealth of detail cannot be extrapolated to the overall target population and this may be considered a limitation to the research. However, within research theory, effective quantitative design is believed to stem from the insights developed from qualitative studies. • Develop and implement a quantitative study on sweetpotato attitudes and behaviours based on the results of this study.
Resumo:
Light interception is a major factor influencing plant development and biomass production. Several methods have been proposed to determine this variable, but its calculation remains difficult in artificial environments with heterogeneous light. We propose a method that uses 3D virtual plant modelling and directional light characterisation to estimate light interception in highly heterogeneous light environments such as growth chambers and glasshouses. Intercepted light was estimated by coupling an architectural model and a light model for different genotypes of the rosette species Arabidopsis thaliana (L.) Heynh and a sunflower crop. The model was applied to plants of contrasting architectures, cultivated in isolation or in canopy, in natural or artificial environments, and under contrasting light conditions. The model gave satisfactory results when compared with observed data and enabled calculation of light interception in situations where direct measurements or classical methods were inefficient, such as young crops, isolated plants or artificial conditions. Furthermore, the model revealed that A. thaliana increased its light interception efficiency when shaded. To conclude, the method can be used to calculate intercepted light at organ, plant and plot levels, in natural and artificial environments, and should be useful in the investigation of genotype-environment interactions for plant architecture and light interception efficiency. This paper originates from a presentation at the 5th International Workshop on Functional–Structural Plant Models, Napier, New Zealand, November 2007.
Resumo:
Maize (Zea mays L.) is a chill-susceptible crop cultivated in northern latitude environments. The detrimental effects of cold on growth and photosynthetic activity have long been established. However, a general overview of how important these processes are with respect to the reduction of productivity reported in the field is still lacking. In this study, a model-assisted approach was used to dissect variations in productivity under suboptimal temperatures and quantify the relative contributions of light interception (PARc) and radiation use efficiency (RUE) from emergence to flowering. A combination of architectural and light transfer models was used to calculate light interception in three field experiments with two cold-tolerant lines and at two sowing dates. Model assessment confirmed that the approach was suitable to infer light interception. Biomass production was strongly affected by early sowings. RUE was identified as the main cause of biomass reduction during cold events. Furthermore, PARc explained most of the variability observed at flowering, its relative contributions being more or less important according to the climate experienced. Cold temperatures resulted in lower PARc, mainly because final leaf length and width were significantly reduced for all leaves emerging after the first cold occurrence. These results confirm that virtual plants can be useful as fine phenotyping tools. A scheme of action of cold on leaf expansion, light interception and radiation use efficiency is discussed with a view towards helping breeders define relevant selection criteria. This paper originates from a presentation at the 5th International Workshop on Functional–Structural Plant Models, Napier, New Zealand, November 2007.