4 resultados para Income forecasting
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Decision-making in agriculture is carried out in an uncertain environment with farmers often seeking information to reduce risk. As a result of the extreme variability of rainfall and stream-flows in north-eastern Australia, water supplies for irrigated agriculture are a limiting factor and a source of risk. The present study examined the use of seasonal climate forecasting (SCF) when calculating planting areas for irrigated cotton in the northern Murray Darling Basin. Results show that minimising risk by adjusting plant areas in response to SCF can lead to significant gains in gross margin returns. However, how farmers respond to SCF is dependent on several other factors including irrigators’ attitude towards risk.
Resumo:
To facilitate marketing and export, the Australian macadamia industry requires accurate crop forecasts. Each year, two levels of crop predictions are produced for this industry. The first is an overall longer-term forecast based on tree census data of growers in the Australian Macadamia Society (AMS). This data set currently accounts for around 70% of total production, and is supplemented by our best estimates of non-AMS orchards. Given these total tree numbers, average yields per tree are needed to complete the long-term forecasts. Yields from regional variety trials were initially used, but were found to be consistently higher than the average yields that growers were obtaining. Hence, a statistical model was developed using growers' historical yields, also taken from the AMS database. This model accounted for the effects of tree age, variety, year, region and tree spacing, and explained 65% of the total variation in the yield per tree data. The second level of crop prediction is an annual climate adjustment of these overall long-term estimates, taking into account the expected effects on production of the previous year's climate. This adjustment is based on relative historical yields, measured as the percentage deviance between expected and actual production. The dominant climatic variables are observed temperature, evaporation, solar radiation and modelled water stress. Initially, a number of alternate statistical models showed good agreement within the historical data, with jack-knife cross-validation R2 values of 96% or better. However, forecasts varied quite widely between these alternate models. Exploratory multivariate analyses and nearest-neighbour methods were used to investigate these differences. For 2001-2003, the overall forecasts were in the right direction (when compared with the long-term expected values), but were over-estimates. In 2004 the forecast was well under the observed production, and in 2005 the revised models produced a forecast within 5.1% of the actual production. Over the first five years of forecasting, the absolute deviance for the climate-adjustment models averaged 10.1%, just outside the targeted objective of 10%.
Resumo:
Better Macadamia crop forecasting.
Resumo:
The continually expanding macadamia industry needs an accurate crop forecasting system to allow it to develop effective crop handling and marketing strategies, particularly when the industry faces recurring cycles of unsustainably high and low commodity prices. This project aims to provide the AMS with a robust, reliable predictive model of national crop volume within 10% of the actual crop by 1 April each year by factoring known seasonal, environmental, cultural, climatic, management and biological constraints, together with the existing AMS database which includes data on tree numbers, tree age, variety, location and previous season's production.