7 resultados para ISM : cosmic rays

em eResearch Archive - Queensland Department of Agriculture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the first investigation 25 years ago, the application of genetic tools to address ecological and evolutionary questions in elasmobranch studies has greatly expanded. Major developments in genetic theory as well as in the availability, cost effectiveness and resolution of genetic markers were instrumental for particularly rapid progress over the last 10 years. Genetic studies of elasmobranchs are of direct importance and have application to fisheries management and conservation issues such as the definition of management units and identification of species from fins. In the future, increased application of the most recent and emerging technologies will enable accelerated genetic data production and the development of new markers at reduced costs, paving the way for a paradigm shift from gene to genome-scale research, and more focus on adaptive rather than just neutral variation. Current literature is reviewed in six fields of elasmobranch molecular genetics relevant to fisheries and conservation management (species identification, phylogeography, philopatry, genetic effective population size, molecular evolutionary rate and emerging methods). Where possible, examples from the Indo-Pacific region, which has been underrepresented in previous reviews, are emphasized within a global perspective. (C) 2012 The Authors Journal of Fish Biology (C) 2012 The Fisheries Society of the British Isles

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catches of sharks and bycatch in large-mesh nets and baited drumlines used by the Queensland Shark Control Program were examined to determine the efficacy of both gear types and assess fishing strategies that minimise their impacts. There were few significant differences in the size of both sharks and bycatch in the two gear types, apart from significantly smaller (p < 0.05) tiger sharks Galeocerdo cuvier being taken on drumlines and smaller green turtles Chelonia mydas in nets. Catch per unit effort showed orders of magnitude differences among species, even within the same family. Hammerhead sharks and rays were particularly vulnerable to net capture, whereas higher catch rates of tiger sharks were observed for drumlines. Nets caught more marine mammals, teleost fish and rays, whereas drumlines exhibited higher catch rates of the threatened loggerhead turtle Caretta caretta. Survival of most taxa (particularly obligate ram ventilators) was lower in nets than drumlines. Bycatch species (turtles and marine mammals) were able to swim to the surface to breathe when they were hooked on drumlines, enhancing their survival potential. Fishing strategies that recognise the different selectivity patterns of the gear can be developed to suit local biotic and abiotic conditions, although it is recognised that quantification of both ecological risk and risk to bathers is not a simple task.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Concern over the amount of by-catch from benthic trawl fisheries and research into the problem have increased in recent years. The present paper demonstrated that by-catch rates in the Queensland (Australia) saucer scallop (Amusium balloti) trawl fishery can be reduced by 77% (by weight) using nets fitted with a turtle excluder device (TED) and a square-mesh codend, compared with a standard diamond-mesh codend with no TED. This large reduction was achieved with no significant effect on the legal size scallop catch rate and 39% fewer undersize scallops were caught. In total, 382 taxa were recorded in the by-catch, which was dominated by sponges, portunid crabs, small demersal and benthic fish (e.g. leatherjackets, stingerfish, bearded ghouls, nemipterids, longspine emperors, lizard fish, triggerfish, flounders and rabbitfish), elasmobranchs (e.g. mainly rays) and invertebrates (e.g. sea stars, sea urchins, sea cucumbers and bivalve molluscs). Extremely high reductions in catch rate (i.e. ≥85%) were demonstrated for several by-catch species owing to the square-mesh codend. Square-mesh codends show potential as a means of greatly reducing by-catch and lowering the incidental capture and mortality of undersize scallops and Moreton Bay bugs (Thenus australiensis) in this fishery

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ninety-three giant Queensland grouper, Epinephelus lanceolatus (Bloch), were found dead in Queensland, Australia, from 2007 to 2011. Most dead fish occurred in northern Queensland, with a peak of mortalities in Cairns in June 2008. In 2009, sick wild fish including giant sea catfish, Arius thalassinus (Ruppell), and javelin grunter, Pomadasys kaakan (Cuvier), also occurred in Cairns. In 2009 and 2010, two disease epizootics involving wild stingrays occurred at Sea World marine aquarium. Necropsy, histopathology, bacteriology and PCR determined that the cause of deaths of 12 giant Queensland grouper, three wild fish, six estuary rays, Dasyatis fluviorum (Ogilby), one mangrove whipray, Himantura granulata (Macleay), and one eastern shovelnose ray, Aptychotrema rostrata (Shaw), was Streptococcus agalactiae septicaemia. Biochemical testing of 34 S.agalactiae isolates from giant Queensland grouper, wild fish and stingrays showed all had identical biochemical profiles. The 16S rRNA gene sequences of isolates confirmed all isolates were S.agalactiae; genotyping of selected S.agalactiae isolates showed the isolates from giant Queensland grouper were serotype Ib, whereas isolates from wild fish and stingrays closely resembled serotype II. This is the first report of S.agalactiae from wild giant Queensland grouper and other wild tropical fish and stingray species in Queensland, Australia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Mobulidae are zooplanktivorous elasmobranchs comprising two recognized species of manta rays (Manta spp.) and nine recognized species of devil rays (Mobula spp.). They are found circumglobally in tropical, subtropical and temperate coastal waters. Although mobulids have been recorded for over 400 years, critical knowledge gaps still compromise the ability to assess the status of these species. On the basis of a review of 263 publications, a comparative synthesis of the biology and ecology of mobulids was conducted to examine their evolution, taxonomy, distribution, population trends, movements and aggregation, reproduction, growth and longevity, feeding, natural mortality and direct and indirect anthropogenic threats. There has been a marked increase in the number of published studies on mobulids since c. 1990, particularly for the genus Manta, although the genus Mobula remains poorly understood. Mobulid species have many common biological characteristics although their ecologies appear to be species-specific, and sometimes region-specific. Movement studies suggest that mobulids are highly mobile and have the potential to rapidly travel large distances. Fishing pressure is the major threat to many mobulid populations, with current levels of exploitation in target fisheries unlikely to be sustainable. Advances in the fields of population genetics, acoustic and satellite tracking, and stable-isotope and fatty-acid analyses will provide new insights into the biology and ecology of these species. Future research should focus on the uncertain taxonomy of mobulid species, the degree of overlap between their large-scale movement and human activities such as fisheries and pollution, and the need for management of inter-jurisdictional fisheries in developing nations to ensure their long-term sustainability. Closer collaboration among researchers worldwide is necessary to ensure standardized sampling and modelling methodologies to underpin global population estimates and status.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrosensory system is found in all chondrichthyan fishes and is used for several biological functions, most notably prey detection. Variation in the physical parameters of a habitat type, i.e. water conductivity, may influence the morphology of the electrosensory system. Thus, the electrosensory systems of freshwater rays are considerably different from those of fully marine species; however, little research has so far examined the morphology and distribution of these systems in euryhaline elasmobranchs. The present study investigates and compares the morphology and distribution of electrosensory organs in two sympatric stingray species: the (euryhaline) estuary stingray, Dasyatis fluviorum, and the (marine) blue-spotted maskray, Neotrygon kuhlii. Both species possess a significantly higher number of ventral electrosensory pores than previously assessed elasmobranchs. This correlates with a diet consisting of benthic infaunal and epifaunal prey, where the electrosensory pore distribution patterns are likely to be a function of both ecology and phylogeny. The gross morphology of the electrosensory system in D. fluviorum is more similar to that of other marine elasmobranch species, rather than that of freshwater species. Both D. fluviorum and N. kuhlii possess 'macro-ampullae' with branching canals leading to several alveoli. The size of the pores and the length of the canals in D. fluviorum are smaller than in N. kuhlii, which is likely to be an adaptation to habitats with lower conductivity. This study indicates that the morphology of the electrosensmy system in.a euryhaline elasmobranch species seems very similar to that of their fully marine counterparts. However, some morphological differences are present between these two sympatric species, which are thought to be linked to their habitat type. (C) 2013 Elsevier GmbH. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electroreception is an ancient sense found in many aquatic animals, including sharks, which may be used in the detection of prey, predators and mates. Wobbegong sharks (Orectolobidae) and angel sharks (Squatinidae) represent two distantly related families that have independently evolved a similar dorso-ventrally compressed body form to complement their benthic ambush feeding strategy. Consequently, these groups represent useful models in which to investigate the specific morphological and physiological adaptations that are driven by the adoption of a benthic lifestyle. In this study, we compared the distribution and abundance of electrosensory pores in the spotted wobbegong shark (Orectolobus maculatus) with the Australian angel shark (Squatina australis) to determine whether both species display a similar pattern of clustering of sub-dermal electroreceptors and to further understand the functional importance of electroreception in the feeding behaviour of these benthic sharks. Orectolobus maculatus has a more complex electrosensory system than S. australis, with a higher abundance of pores and an additional cluster of electroreceptors positioned in the snout (the superficial ophthalmic cluster). Interestingly, both species possess a cluster of pores (the hyoid cluster, positioned slightly posterior to the first gill slit) more commonly found in rays, but which may be present in all benthic elasmobranchs to assist in the detection of approaching predators.