13 resultados para Hymenoptera allergy
em eResearch Archive - Queensland Department of Agriculture
Resumo:
We evaluated the role of the larval parasitoid, Diadegma semiclausum Hellén (Hymenoptera: Ichneumonidae), in controlling Plutella xylostella (L.) (Lepidoptera: Plutellidae) by cage exclusion experiments and direct field observation during the winter season in southern Queensland, Australia. The cage exclusion experiment involved uncaged, open cage and closed cage treatments. A higher percentage (54-83%) of P. xylostella larvae on sentinel plants were lost in the uncaged treatment than the closed (4-9%) or open cage treatments (11-29%). Of the larvae that remained in the uncaged treatment, 72-94% were parasitized by D. semiclausum, much higher than that in the open cage treatment (8-37% in first trial, and 38-63% in second trial). Direct observations showed a significant aggregation response of the field D. semiclausum populations to high host density plants in an experimental plot and to high host density plots that were artificially set-up near to the parasitoid source fields. The degree of aggregation varied in response to habitat quality of the parasitoid source field and scales of the manipulated host patches. As a result, density-dependence in the pattern of parasitism may depend on the relative degree of aggregation of the parasitoid population at a particular scale. A high degree of aggregation seems to be necessary to generate density-dependent parasitism by D. semiclausum. Integration of the cage exclusion experiment and direct observation demonstrated the active and dominant role of this parasitoid in controlling P. xylostella in the winter season. A biologically based IPM strategy, which incorporates the use of D. semiclausum with Bt, is suggested for the management of P. xylostella in seasons or regions with a mild temperature.
Resumo:
Neopolycystus sp. is the only primary egg parasitoid associated with the pest beetle Paropsis atomaria in subtropical eucalypt plantations, but its impact on its host populations is unknown. The simplified ecosystem represented by the plantation habitat, lack of interspecific competition for host and parasitoid, and the multivoltinism of the host population makes this an ideal system for quantifying the direct and indirect effects of egg parasitism, and hence, effects on host population dynamics. Within-, between- and overall-egg-batch parasitism rates were determined at three field sites over two field seasons, and up to seven host generations. The effect of exposure time (egg batch age), host density proximity to native forest and water sources on egg parasitism rates was also tested. Neopolycystus sp. exerts a significant influence on P. atomaria populations in Eucalyptus cloeziana. plantations in south-eastern Queensland, causing the direct (13%) and indirect (15%) mortality of almost one-third of all eggs in the field. Across seasons and generations, 45% of egg batches were parasitised, with a within-batch parasitism rate of around 30%. Between-batch parasitism increased up to 5-6 days after oviposition in the field, although within-batch parasitism rates generally did not. However, there were few apparent patterns to egg parasitism, with rates often varying significantly between sites and seasons.
Resumo:
Quantifying the potential spread and density of an invading organism enables decision-makers to determine the most appropriate response to incursions. We present two linked models that estimate the spread of Solenopsis invicta Buren (red imported fire ant) in Australia based on limited data gathered after its discovery in Brisbane in 2001. A stochastic cellular automaton determines spread within a location (100 km by 100 km) and this is coupled with a model that simulates human-mediated movement of S. invicta to new locations. In the absence of any control measures, the models predict that S. invicta could cover 763 000–4 066 000 km2 by the year 2035 and be found at 200 separate locations around Australia by 2017–2027, depending on the rate of spread. These estimated rates of expansion (assuming no control efforts were in place) are higher than those experienced in the USA in the 1940s during the early invasion phases in that country. Active control efforts and quarantine controls in the USA (including a concerted eradication attempt in the 1960s) may have slowed spread. Further, milder winters, the presence of the polygynous social form, increased trade and human mobility in Australia in 2000s compared with the USA in 1940s could contribute to faster range expansion.
Resumo:
The volatile components of the mandibular gland secretion generated by the Giant Ichneumon parasitoid wasp Megarhyssa nortoni nortoni Cresson are mainly spiroacetals and methyl ketones, and all have an odd number of carbon atoms. A biosynthetic scheme rationalizing the formation of these diverse components is presented. This scheme is based on the results of incorporation studies using 2H-labeled precursors and [18O]dioxygen. The key steps are postulated to be decarboxylation of β-ketoacid equivalents, β-oxidation (chain shortening), and monooxygenase-mediated hydroxylation leading to a putative ketodiol that cyclizes to spiroacetals. The generality of the role of monooxygenases in spiroacetal formation in insects is considered, and overall, a cohesive, internally consistent theory of spiroacetal generation by insects is presented, against which future hypotheses will have to be compared.
Resumo:
Resins are a critical resource for stingless bees and resin-collecting bees act as seed dispersers in tropical plants. We describe the diurnal foraging patterns of colonies of Trigona sapiens and T. hockingsi on resin and pollen. We also document patterns of waste removal and seed dispersal of Corymbia torelliana. At most, only 10% of foragers collected resin or dispersed seed. Nevertheless, bees dispersed 1-3 seeds outside the nest per 5 minutes, and 38-114 seeds per day for each nest. The proportion of returning bees carrying pollen was highest in the morning for both species. The proportion of foragers returning with resin loads showed no significant diurnal variation in any season. Waste removal activity peaked in the afternoon for T. sapiens and in the morning for T. hockingsi. Seed removal peaked in the afternoon in one year only for T. sapiens. Bees dispersed thousands of seeds of C. torelliana over the season even though only a small proportion of the colony was engaged in seed transport.
Resumo:
Trichogramma Westwood egg parasitoids alone generally fail to suppress heliothine pests when released in established cotton-growing regions. Factors hindering their success include indiscriminate use of detrimental insecticides, compensation for minimal pest larval hatch due to their activity via reduced larval cannibalism or mortality in general, singly laid heliothine eggs avoiding detection and asynchronous development benefiting host over parasitoid. Yet, despite these limitations, relatively large Trichogramma pretiosum Riley populations pervade and effectively suppress Helicoverpa (Hardwick) pests in Australian Bt (Bacillus thuringiensis Berliner)-transgenic cotton, Gossypium hirsutum L., crops, especially in the Ord River Irrigation Area (ORIA) of tropical northern Australia, where their impact on the potentially resistant pest species, Helicoverpa armigera (Hubner), is considered integral to the local insecticide resistance management (IRM) strategy for continued, sustainable Bt-transgenic cotton production. When devoid of conventional insecticides, relatively warm and stable conditions of the early dry season in winter grown ORIA Bt-transgenic cotton crops are conducive to Trichogramma proliferation and biological control appears effective. Further, there is considerable scope to improve Trichogramma's biological control potential, in both the ORIA and established cotton-growing regions, via habitat manipulation. It is proposed that Trichogramma may prove equally effective in developing agricultural regions of monsoonal northern Australia, and that environmental constraints on Trichogramma survival, and those of other natural enemies, require due consideration prior to their successful application in biological control programs.
Resumo:
Diachasmimorpha kraussii is a larval parasitoid of dacine fruit flies. Host utilisation behaviour, including field foraging behaviour, is poorly known in this species. The diurnal foraging behaviour of D. kraussii and one of its common hosts, Bactrocera tryoni, in a nectarine orchard was concurrently recorded. Observations of mating, resting, feeding and oviposition were taken two-hourly on 42 trees, commencing at 07:00 h and terminating at 17:30 h, for 17 days. Resting and oviposition were common events within the orchard for both species, while mating behaviours were not recorded in the orchard for either species. Feeding was not observed for D. kraussii and was rare for B. tryoni. At the level of the individual tree there was a very weak, but significant correlation between parasitoid and fly abundance over a day, but when broken down to the individual observation periods the correlations were absent, or were weakly significant in an inconsistent manner (i.e. sometimes positively correlated, sometimes negatively correlated). At the orchard level, abundance of the parasitoid was not correlated with adult fly abundance. Results suggest that D. kraussii forage independently to adult B. tryoni, a result consistent with a prediction that their foraging is largely driven by larval or plant damage cues.
Resumo:
Diachasmimorpha kraussii is an endoparasitoid of larval dacine fruit flies. To date, the only host preference study done on D. kraussii has used fruit flies from outside its native range (Australia, Papua New Guinea, Solomon Islands). In contrast, this paper investigates host preference for four fly species (Bactrocera cacuminata, Bactrocera cucumis, Bactrocera jarvisi and Bactrocera tryoni), which occur sympatrically with the wasp in the Australian component of the native range. D. kraussii oviposition preference, host suitability (parasitism rate, number of progeny, sex ratio) and offspring performance measures (body length, hind tibial length, developmental time) were investigated with respect to the four fly species in the laboratory in both no-choice and choice situations. The parasitoid accepted all four fruit fly species for oviposition in both no-choice and choice tests; however, adult wasps only emerged from B. jarvisi and B. tryoni. Through dissection, it was demonstrated that parasitoid eggs were encapsulated in both B. cacuminata and B. cucumis. Between the two suitable hosts, measurements of oviposition preference, host suitability and offspring performance measurements either did not vary significantly or varied in an inconsistent manner. Based on our results, and a related study by other authors, we conclude that D. krausii, at the point of oviposition, cannot discriminate between physiologically suitable and unsuitable hosts.
Resumo:
Diachasmimorpha kraussii is a polyphagous endoparasitoid of dacine fruit flies. The fruit fly hosts of D. krausii, in turn, attack a wide range of fruits and vegetables. The role that fruits play in host selection behaviour of D. kraussii has not been previously investigated. This study examines fruit preference of D. kraussii through a laboratory choice-test trial and field fruit sampling. In the laboratory trial, oviposition preference and offspring performance measures (sex ratio, developmental time, body length, hind tibial length) of D. kraussii were investigated with respect to five fruit species [Psidium guajava L. (guava), Prunis persica L. (peach), Malus domestica Borkh. (apple), Pyrus communis L. (pear) and Citrus sinensis L. (orange)], and two fruit fly species (Bactrocera jarvisi and B. tryoni). Diachasmimorpha kraussii responded to infested fruit of all fruit types in both choice and no-choice tests, but showed stronger preference for guava and peach in the choice tests irrespective of the species of fly larvae within the fruit. The wasp did not respond to uninfested fruit. The offspring performance measures differed in a non-consistent fashion between the fruit types, but generally wasp offspring performed better in guava, peach and orange. The offspring sex ratio, except for one fruit/fly combination (B. jarvisi in apple), was always female biased. The combined results suggest that of the five fruits tested, guava and peach are the best fruit substrates for D. krausii. Field sampling indicated a non-random use of available, fruit fly infested fruit by D. kraussii. Fruit fly maggots within two fruit species, Plachonia careya and Terminalia catappa, had disproportionately higher levels of D. krausii parasitism than would be expected based on the proportion of different infested fruit species sampled, or levels of fruit fly infestation within those fruit.
Resumo:
Parasitoid survival and fecundity is generally enhanced with access to carbohydrate food sources. In many agricultural ecosystems, there is often a scarcity of suitable carbohydrates for parasitoids. This study compared the suitability of aphid honeydew and buckwheat nectar as diet for the aphid parasitoid Lysiphlebus testaceipes. Wasp lifespan and egg load were both increased with access to carbohydrates, but no differences were detected between the various carbohydrates diets tested. As aphid honeydew is a sufficient source of nutrition and L.testaceipes is a short-lived species, adding additional sources of carbohydrates like floral nectar strips to the agricultural landscape is unlikely to significantly increase the biological control exerted by L.testaceipes. © 2012 Australian Entomological Society.
Resumo:
Carpintero and Dellap, (Hemiptera: Thaumastocoridae) is a native Australian sap-feeding insect that has become invasive and seriously damaging to commercially grown in the Southern Hemisphere. Lin and Huber (Hymenoptera: Mymaridae) was recently discovered as an egg parasitoid of the Thaumastocoridae in Australia. Mitochondrial DNA (mtDNA; cytochrome oxidase subunit I, COI) sequence diversity amongst 104 individuals from these native populations revealed 24 sequence haplotypes. The COI haplotypes of individuals collected from the Sydney and Southeast Queensland clustered in distinct groups, indicating limited spread of the insect between the regions. Individuals collected from Perth in Western Australia were represented by four COI haplotypes. Although this population is geographically more isolated from other populations, two COI haplotypes were identical to haplotypes found in the Sydney region. The results suggest that has recently been introduced into Perth, possibly from the Sydney area. The high mtDNA diversity and limited spread that is suggested for is in contrast to the lack of geographic associated mtDNA diversity and extensive spread of . If implemented as a biological control agent, this factor will need to be considered in collecting and releasing .
Resumo:
In 2001, the red imported fire ant (Solenopsis invicta Buren) was identified in Brisbane, Australia. An eradication program involving broadcast bait treatment with two insect growth regulators and a metabolic inhibitor began in September of that year and is currently ongoing. To gauge the impacts of these treatments on local ant populations, we examined long-term monitoring data and quantified abundance patterns of S. invicta and common local ant genera using a linear mixed-effects model. For S. invicta, presence in pitfalls reduced over time to zero on every site. Significantly higher numbers of S. invicta workers were collected on high-density polygyne sites, which took longer to disinfest compared with monogyne and low-density polygyne sites. For local ants, nine genus groups of the 10 most common genera analyzed either increased in abundance or showed no significant trend. Five of these genus groups were significantly less abundant at the start of monitoring on high-density polygyne sites compared with monogyne and low-density polygyne sites. The genus Pheidole significantly reduced in abundance over time, suggesting that it was affected by treatment efforts. These results demonstrate that the treatment regime used at the time successfully removed S. invicta from these sites in Brisbane, and that most local ant genera were not seriously impacted by the treatment. These results have important implications for current and future prophylactic treatment efforts, and suggest that native ants remain in treated areas to provide some biological resistance to S. invicta.
Resumo:
Silverleaf whitefly (SLW), Bemisia tabaci biotype B, is a major horticultural pest that costs Queensland vegetable growers millions of dollars in lost production and control measures each year. In the Bowen and Burdekin districts of North Queensland, the major cultivated SLW host crops are tomatoes, melons, green beans, pumpkins, eggplants, and cucumbers, which cover a total production area of approximately 6500 ha. Eretmocerus hayati, an effective SLW parasitoid, was imported into Australia by CSIRO in 2002 and released from quarantine in 2004. In 2006, DAFF established a mass-rearing unit for E. hayati at Bowen Research Station to provide E. hayati for release on vegetable farms within its SLW integrated pest management research program. A total of 1.3 million E. hayati were released over three seasons on 34 vegetable farms in the Bowen and Burdekin districts (October 2006 to December 2008). Post-release samplings were conducted across the release area over this time period with parasitism levels recorded in tomatoes, melons, beans, eggplants, pumpkins, and various SLW weed hosts. Sample data show that E. hayati established at most release sites as well as some non-release sites, indicating natural spread. Overall results from these three years of evaluation clearly demonstrated that E hayati releases played a significant role in SLW control. In most crops sampled, E hayati exerted between 30 and 80% parasitism. Even in regularly sprayed crops, such as tomato and eggplant, E. hayati was able to achieve an overall average parasitism of 45%.