2 resultados para Hydrogenated soy phosphatidylcholine

em eResearch Archive - Queensland Department of Agriculture


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The project aims at improving the productivity and profitability of mung beans, soy beans and peanuts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The survival and growth of black tiger prawn (Penaeus monodon) juveniles (~3.3 g) were compared after feeding in tanks over one month with several prepared diets based on organically certified ingredients. The extrusion process in the manufacture of pelletised experimental diets was similar to processes used in commercial plants and was closely documented. The daily feeding rate (6% of starting mean body weight) was split equally into two feeds, one in the morning and one in the afternoon. All diets tested produced high survival (97-100%). A widely-used commercial Australian prawn feed was used as a control diet. It contained 41.2% protein with 29.5 g kg-1 lysine, and produced the highest (P<0.05) growth (117% weight gain). Three of the experimental organic diets tested (namely, 1. wheat + soy, 2. pig weaner diet + soy, and 3. pig weaner diet + dried fish waste) produced moderate growth (73–77% weight gain). These contained 33%, 36% or 31% protein, respectively, and produced better (P<0.05) growth than diets utilising a range of other prospective ingredients (eg: wheat + dried scallop gut, wheat + fish waste, wheat + chickpea, or wheat + macadamia meal, containing 23%, 25%, 29% or 24% protein, respectively). An unfed control-treatment produced the lowest (P<0.05) growth (4% weight gain). The water stability of the experimental diets that produced the best growth was poorer than the commercial diet, suggesting that improvements in this aspect of these organic feed’s manufacture could result in additional performance benefits and possibly reduced feed wastage. Analyses revealed a linear relationship between diet performance (in terms of weight gains) and the protein and lysine contents of diets. About 70% of diet performance was explained by these factors. The superior performance of the commercial diet could be attributed primarily to its formulation using mainly marine proteins, as well as a range of other unknown factors (commercial in confidence). These other factors range from use of feed attractants, better knowledge of ingredient nutrient availability, different extrusion conditions and the use of other unspecified micro-nutrients not present in the experimental diets. The organic diets studied still require a degree of fine-tuning before structured commercial uptake. This would sensibly include further detailed investigations of the composition and nutrient availabilities of these and other organic dietary ingredients, and refinement of the extrusion process for formulated diets.