2 resultados para History of childhood and youth

em eResearch Archive - Queensland Department of Agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine the microchemistry of otoliths of cohorts of a fished shed population of the large catadromous fish, barramundi Lates calcarifer from the estuary of a large tropical river. Barramundi from the estuary of the large, heavily regulated Fitzroy River, north eastern Australia were analysed by making transects of 87Sr/86Sr isotope and trace metal/Ca ratios from the core to the outer edge. Firstly, we examined the Sr/Ca, Ba/Ca, Mg/Ca and Mn/Ca and 87Sr/86Sr isotope ratios in otoliths of barramundi tagged in either freshwater or estuarine habitats that were caught by the commercial fishery in the estuary. We used 87Sr/86Sr isotope ratios to identify periods of freshwater residency and assess whether trace metal/Ca ratios varied between habitats. Only Sr/Ca consistently varied between known periods of estuarine or freshwater residency. The relationships between trace metal/Ca and river flow, salinity, temperature were examined in fish tagged and recaptured in the estuary. We found weak and inconsistent patterns in relationships between these variables in the majority of fish. These results suggest that both individual movement history within the estuary and the scale of environmental monitoring were reducing our ability to detect any patterns. Finally, we examined fish in the estuary from two dominant age cohorts (4 and 7 yr old) before and after a large flood in 2003 to ascertain if the flood had enabled fish from freshwater habitats to migrate to the estuary. There was no difference in the proportion of fish in the estuary that had accessed freshwater after the flood. Instead, we found that larger individuals with each age cohort were more likely to have spent a period in freshwater. This highlights the need to maintain freshwater flows in rivers. About half the fish examined had accessed freshwater habitats before capture. Of these, all had spent at least their first two months in marine salinity waters before entering freshwater and some did not enter freshwater until four years of age. This contrasts with the results of several previous studies in other parts of the range that found that access to freshwater swamps by larval barramundi was important for enhanced population productivity and recruitment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: Resolving the origin of invasive plant species is important for understanding the introduction histories of successful invaders and aiding strategies aimed at their management. This study aimed to infer the number and origin(s) of introduction for the globally invasive species, Macfadyena unguis-cati and Jatropha gossypiifolia using molecular data. Location: Native range: Neotropics; Invaded range: North America, Africa, Europe, Asia, Pacific Islands and Australia. Methods: We used chloroplast microsatellites (cpSSRs) to elucidate the origin(s) of introduced populations and calculated the genetic diversity in native and introduced regions. Results: Strong genetic structure was found within the native range of M. unguis-cati, but no genetic structuring was evident in the native range of J. gossypiifolia. Overall, 27 haplotypes were found in the native range of M. unguis-cati. Only four haplotypes were found in the introduced range, with more than 96% of introduced specimens matching a haplotype from Paraguay. In contrast, 15 haplotypes were found in the introduced range of J. gossypiifolia, with all invasive populations, except New Caledonia, comprising multiple haplotypes. Main conclusions: These data show that two invasive plant species from the same native range have had vastly different introduction histories in their non-native ranges. Invasive populations of M. unguis-cati probably came from a single or few independent introductions, whereas most invasive J. gossypiifolia populations arose from multiple introductions or alternatively from a representative sample of genetic diversity from a panmictic native range. As introduced M. unguis-cati populations are dominated by a single haplotype, locally adapted natural enemies should make the best control agents. However, invasive populations of J. gossypiifolia are genetically diverse and the selection of bio-control agents will be considerably more complex.