1 resultado para High-dimensional data visualization
em eResearch Archive - Queensland Department of Agriculture
Filtro por publicador
- JISC Information Environment Repository (2)
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (2)
- Repository Napier (1)
- Aberdeen University (3)
- Aberystwyth University Repository - Reino Unido (5)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (9)
- Aquatic Commons (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (9)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (60)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (9)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (39)
- Boston University Digital Common (10)
- Brock University, Canada (8)
- Bulgarian Digital Mathematics Library at IMI-BAS (6)
- CaltechTHESIS (9)
- Cambridge University Engineering Department Publications Database (31)
- CentAUR: Central Archive University of Reading - UK (70)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (55)
- Cochin University of Science & Technology (CUSAT), India (6)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (14)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (8)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (4)
- Digital Commons at Florida International University (9)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (5)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (2)
- DRUM (Digital Repository at the University of Maryland) (6)
- Duke University (22)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (10)
- Indian Institute of Science - Bangalore - Índia (38)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (4)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (17)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (27)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (48)
- Queensland University of Technology - ePrints Archive (70)
- RDBU - Repositório Digital da Biblioteca da Unisinos (2)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (15)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (1)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (5)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (24)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (26)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (3)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (6)
- Universidade Metodista de São Paulo (3)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (20)
- University of Connecticut - USA (1)
- University of Queensland eSpace - Australia (26)
- University of Southampton, United Kingdom (4)
- University of Washington (9)
- WestminsterResearch - UK (2)
Resumo:
Understanding the effects of different types and quality of data on bioclimatic modeling predictions is vital to ascertaining the value of existing models, and to improving future models. Bioclimatic models were constructed using the CLIMEX program, using different data types – seasonal dynamics, geographic (overseas) distribution, and a combination of the two – for two biological control agents for the major weed Lantana camara L. in Australia. The models for one agent, Teleonemia scrupulosa Stål (Hemiptera:Tingidae) were based on a higher quality and quantity of data than the models for the other agent, Octotoma scabripennis Guérin-Méneville (Coleoptera: Chrysomelidae). Predictions of the geographic distribution for Australia showed that T. scrupulosa models exhibited greater accuracy with a progressive improvement from seasonal dynamics data, to the model based on overseas distribution, and finally the model combining the two data types. In contrast, O. scabripennis models were of low accuracy, and showed no clear trends across the various model types. These case studies demonstrate the importance of high quality data for developing models, and of supplementing distributional data with species seasonal dynamics data wherever possible. Seasonal dynamics data allows the modeller to focus on the species response to climatic trends, while distributional data enables easier fitting of stress parameters by restricting the species envelope to the described distribution. It is apparent that CLIMEX models based on low quality seasonal dynamics data, together with a small quantity of distributional data, are of minimal value in predicting the spatial extent of species distribution.