5 resultados para High Confidence Rules

em eResearch Archive - Queensland Department of Agriculture


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Measurement of individual emission sources (e.g., animals or pen manure) within intensive livestock enterprises is necessary to test emission calculation protocols and to identify targets for decreased emissions. In this study, a vented, fabric-covered large chamber (4.5 × 4.5 m, 1.5 m high; encompassing greater spatial variability than a smaller chamber) in combination with on-line analysis (nitrous oxide [N2O] and methane [CH4] via Fourier Transform Infrared Spectroscopy; 1 analysis min-1) was tested as a means to isolate and measure emissions from beef feedlot pen manure sources. An exponential model relating chamber concentrations to ambient gas concentrations, air exchange (e.g., due to poor sealing with the surface; model linear when ≈ 0 m3 s-1), and chamber dimensions allowed data to be fitted with high confidence. Alternating manure source emission measurements using the large-chamber and the backward Lagrangian stochastic (bLS) technique (5-mo period; bLS validated via tracer gas release, recovery 94-104%) produced comparable N2O and CH4 emission values (no significant difference at P < 0.05). Greater precision of individual measurements was achieved via the large chamber than for the bLS (mean ± standard error of variance components: bLS half-hour measurements, 99.5 ± 325 mg CH4 s-1 and 9.26 ± 20.6 mg N2O s-1; large-chamber measurements, 99.6 ± 64.2 mg CH4 s-1 and 8.18 ± 0.3 mg N2O s-1). The large-chamber design is suitable for measurement of emissions from manure on pen surfaces, isolating these emissions from surrounding emission sources, including enteric emissions. © © American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the use of APSIM - Maize for retrospective analysis of performance of a high input, high yielding maize crop and analysis of predicted performance of maize grown with high inputs over the long-term (>100 years) for specified scenarios of environmental conditions (temperature and radiation) and agronomic inputs (sowing date, plant population, nitrogen fertiliser and irrigation) at Boort, Victoria, Australia. It uses a high yielding (17 400 kg/ha dry grain, 20 500 kg/ha at 15% water) commercial crop grown in 2004-05 as the basis of the study. Yield for the agronomic and environmental conditions of 2004-05 was predicted accurately, giving confidence that the model could be used for the detailed analyses undertaken. The analysis showed that the yield achieved was close to that possible with the conditions and agronomic inputs of 2004-05. Sowing dates during 21 September to 26 October had little effect on predicted yield, except when combined with reduced temperature. Single year and long-term analyses concluded that a higher plant population (11 plants/m2) is needed to optimise yield, but that slightly lower N and irrigation inputs are appropriate for the plant population used commercially (8.4 plants/m2). Also, compared with changes in agronomic inputs increases in temperature and/or radiation had relatively minor effects, except that reduced temperature reduces predicted yield substantially. This study provides an approach for the use of models for both retrospective analysis of crop performance and assessment of long-term variability of crop yield under a wide range of agronomic and environmental conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The in vivo faecal egg count reduction test (FECRT) is the most commonly used test to detect anthelmintic resistance (AR) in gastrointestinal nematodes (GIN) of ruminants in pasture based systems. However, there are several variations on the method, some more appropriate than others in specific circumstances. While in some cases labour and time can be saved by just collecting post-drench faecal worm egg counts (FEC) of treatment groups with controls, or pre- and post-drench FEC of a treatment group with no controls, there are circumstances when pre- and post-drench FEC of an untreated control group as well as from the treatment groups are necessary. Computer simulation techniques were used to determine the most appropriate of several methods for calculating AR when there is continuing larval development during the testing period, as often occurs when anthelmintic treatments against genera of GIN with high biotic potential or high re-infection rates, such as Haemonchus contortus of sheep and Cooperia punctata of cattle, are less than 100% efficacious. Three field FECRT experimental designs were investigated: (I) post-drench FEC of treatment and controls groups, (II) pre- and post-drench FEC of a treatment group only and (III) pre- and post-drench FEC of treatment and control groups. To investigate the performance of methods of indicating AR for each of these designs, simulated animal FEC were generated from negative binominal distributions with subsequent sampling from the binomial distributions to account for drench effect, with varying parameters for worm burden, larval development and drench resistance. Calculations of percent reductions and confidence limits were based on those of the Standing Committee for Agriculture (SCA) guidelines. For the two field methods with pre-drench FEC, confidence limits were also determined from cumulative inverse Beta distributions of FEC, for eggs per gram (epg) and the number of eggs counted at detection levels of 50 and 25. Two rules for determining AR: (1) %reduction (%R) < 95% and lower confidence limit <90%; and (2) upper confidence limit <95%, were also assessed. For each combination of worm burden, larval development and drench resistance parameters, 1000 simulations were run to determine the number of times the theoretical percent reduction fell within the estimated confidence limits and the number of times resistance would have been declared. When continuing larval development occurs during the testing period of the FECRT, the simulations showed AR should be calculated from pre- and post-drench worm egg counts of an untreated control group as well as from the treatment group. If the widely used resistance rule 1 is used to assess resistance, rule 2 should also be applied, especially when %R is in the range 90 to 95% and resistance is suspected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-throughput techniques are necessary to efficiently screen potential lignocellulosic feedstocks for the production of renewable fuels, chemicals, and bio-based materials, thereby reducing experimental time and expense while supplanting tedious, destructive methods. The ratio of lignin syringyl (S) to guaiacyl (G) monomers has been routinely quantified as a way to probe biomass recalcitrance. Mid-infrared and Raman spectroscopy have been demonstrated to produce robust partial least squares models for the prediction of lignin S/G ratios in a diverse group of Acacia and eucalypt trees. The most accurate Raman model has now been used to predict the S/G ratio from 269 unknown Acacia and eucalypt feedstocks. This study demonstrates the application of a partial least squares model composed of Raman spectral data and lignin S/G ratios measured using pyrolysis/molecular beam mass spectrometry (pyMBMS) for the prediction of S/G ratios in an unknown data set. The predicted S/G ratios calculated by the model were averaged according to plant species, and the means were not found to differ from the pyMBMS ratios when evaluating the mean values of each method within the 95 % confidence interval. Pairwise comparisons within each data set were employed to assess statistical differences between each biomass species. While some pairwise appraisals failed to differentiate between species, Acacias, in both data sets, clearly display significant differences in their S/G composition which distinguish them from eucalypts. This research shows the power of using Raman spectroscopy to supplant tedious, destructive methods for the evaluation of the lignin S/G ratio of diverse plant biomass materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-throughput techniques are necessary to efficiently screen potential lignocellulosic feedstocks for the production of renewable fuels, chemicals, and bio-based materials, thereby reducing experimental time and expense while supplanting tedious, destructive methods. The ratio of lignin syringyl (S) to guaiacyl (G) monomers has been routinely quantified as a way to probe biomass recalcitrance. Mid-infrared and Raman spectroscopy have been demonstrated to produce robust partial least squares models for the prediction of lignin S/G ratios in a diverse group of Acacia and eucalypt trees. The most accurate Raman model has now been used to predict the S/G ratio from 269 unknown Acacia and eucalypt feedstocks. This study demonstrates the application of a partial least squares model composed of Raman spectral data and lignin S/G ratios measured using pyrolysis/molecular beam mass spectrometry (pyMBMS) for the prediction of S/G ratios in an unknown data set. The predicted S/G ratios calculated by the model were averaged according to plant species, and the means were not found to differ from the pyMBMS ratios when evaluating the mean values of each method within the 95 % confidence interval. Pairwise comparisons within each data set were employed to assess statistical differences between each biomass species. While some pairwise appraisals failed to differentiate between species, Acacias, in both data sets, clearly display significant differences in their S/G composition which distinguish them from eucalypts. This research shows the power of using Raman spectroscopy to supplant tedious, destructive methods for the evaluation of the lignin S/G ratio of diverse plant biomass materials. © 2015, The Author(s).