19 resultados para Henderson, E. (Ebenezer), 1784-1858

em eResearch Archive - Queensland Department of Agriculture


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2001, an incursion of Mycosphaerella fijiensis, the causal agent of black Sigatoka, was detected in Australia's largest commercial banana growing region, the Tully Banana Production Area in North Queensland. An intensive surveillance and eradication campaign was undertaken which resulted in the reinstatement of the disease-free status for black Sigatoka in 2005. This was the first time black Sigatoka had ever been eradicated from commercial plantations. The success of the eradication campaign was testament to good working relationships between scientists, growers, crop monitors, quarantine regulatory bodies and industry. A key contributing factor to the success was the deployment of a PCR-based molecular diagnostic assay, developed by the Cooperative Research Centre for Tropical Plant Protection (CRCTPP). This assay complemented morphological identification and allowed high throughput diagnosis of samples facilitating rapid decision-making during the eradication campaign. This paper describes the development and successful deployment of molecular diagnostics for black Sigatoka. Shortcomings in the gel-based assay are discussed and the advantages of highly specific real-time PCR assays, capable of differentiating between Mycosphaerella fijiensis, Mycosphaerella musicola and Mycosphaerella eumusae are outlined. Real-time assays may provide a powerful diagnostic tool for applications in surveillance, disease forecasting and resistance testing for Sigatoka leaf spot diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Each Agrilink kit has been designed to be both comprehensive and practical. As the kits are arranged to answer questions of increasing complexity, they are useful references for both new and experienced producers of specific crops. Agrilink integrates the technology of horticultural production with the management of horticultural enterprises. REPRINT INFORMATION - PLEASE READ! For updated information please call 13 25 23 or visit the website www.daf.qld.gov.au This publication has been reprinted as a digital book without any changes to the content published in 1997. We advise readers to take particular note of the areas most likely to be out-of-date and so requiring further research: see detailed information on first page of the kit. Even with these limitations we believe this information kit provides important and valuable information for intending and existing growers. This publication was last revised in 1997. The information is not current and the accuracy of the information cannot be guaranteed by the State of Queensland. This information has been made available to assist users to identify issues involved in the production of potato. This information is not to be used or relied upon by users for any purpose which may expose the user or any other person to loss or damage. Users should conduct their own inquiries and rely on their own independent professional advice. While every care has been taken in preparing this publication, the State of Queensland accepts no responsibility for decisions or actions taken as a result of any data, information, statement or advice, expressed or implied, contained in this publication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Each Agrilink kit has been designed to be both comprehensive and practical. As the kits are arranged to answer questions of increasing complexity, they are useful references for both new and experienced producers of specific crops. Agrilink integrates the technology of horticultural production with the management of horticultural enterprises. REPRINT INFORMATION - PLEASE READ! For updated information please call 13 25 23 or visit the website www.deedi.qld.gov.au (Select: Queensland Industries – Agriculture link) This publication has been reprinted as a digital book without any changes to the content published in 1997. We advise readers to take particular note of the areas most likely to be out-of-date and so requiring further research: see detailed information on first page of the kit. Even with these limitations we believe this information kit provides important and valuable information for intending and existing growers. This publication was last revised in 1997. The information is not current and the accuracy of the information cannot be guaranteed by the State of Queensland. This information has been made available to assist users to identify issues involved in the production of onions. This information is not to be used or relied upon by users for any purpose which may expose the user or any other person to loss or damage. Users should conduct their own inquiries and rely on their own independent professional advice. While every care has been taken in preparing this publication, the State of Queensland accepts no responsibility for decisions or actions taken as a result of any data, information, statement or advice, expressed or implied, contained in this publication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Each Agrilink kit has been designed to be both comprehensive and practical. As the kits are arranged to answer questions of increasing complexity, they are useful references for both new and experienced producers of specific crops. Agrilink integrates the technology of horticultural production with the management of horticultural enterprises. REPRINT INFORMATION - PLEASE READ! For updated information please call 13 25 23 or visit the website www.deedi.qld.gov.au (Select: Queensland Industries – Agriculture link) This publication has been reprinted as a digital book without any changes to the content published in 1997. We advise readers to take particular note of the areas most likely to be out-of-date and so requiring further research: see detailed information on first page of the kit. Even with these limitations we believe this information kit provides important and valuable information for intending and existing growers. This publication was last revised in 1997. The information is not current and the accuracy of the information cannot be guaranteed by the State of Queensland. This information has been made available to assist users to identify issues involved in the production of lettuce. This information is not to be used or relied upon by users for any purpose which may expose the user or any other person to loss or damage. Users should conduct their own inquiries and rely on their own independent professional advice. While every care has been taken in preparing this publication, the State of Queensland accepts no responsibility for decisions or actions taken as a result of any data, information, statement or advice, expressed or implied, contained in this publication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1:100,000 coastal wetland vegetation mapping for Queensland including mangrove communities, saltpans and saline grasslands. Mapping taken from Landsat TM images with ground truthing. Additional metadata is available for details of techniques and accuracy for each section of coastline. Data Currency for each section of coast: NT border to Flinders River - 1995 SE Gulf of Carpentaria - 1987, 1988, 1991, 1992 Cape York Peninsula - 1986-88, 1991 Cape Trib to Bowling Green Bay - 1997-99 The Burdekin Region - 1991 The Bowen Region - 1994-95 The Whitsunday Region - 1997 Repulse Bay - 1989 Central Qld - 1995, 1997 The Curtis Coast Region - 1997 Round Hill Head to Tin Can Inlet - 1997 Moreton Region - 1995. Article Links: 1/ #1662. Queensland Coastal Wetland Resources: the Northern Territory Border to Flinders River. Project Report. Information Series QI00099. 2/ #1663. Queensland Coastal Wetland Resources: Sand Bay to Keppel Bay. Project Report. Information Series QI00100. 3/ #1664. Queensland Coastal Wetland Resources: Cape Tribulation to Bowling Green Bay. Project Report. Information Series QI01064. 4/ #1666. Coastal Wetlands Resources Investigation of the Burdekin Delta for declaration as fisheries reserves. Report to Ocean Rescue 2000. Project Report. 5/ #1667. Queensland Coastal Wetland Resource Investigation of the Bowen Region: Cape Upstart to Gloucester Island. Project Report. 6/ #1784. Resource Assessment of the Tidal Wetland Vegetation of Western Cape York Peninsula, North Queensland, Report to Ocean Rescue 2000. Project Report. 7/ #1785. Marine Vegetation of Cape York Peninsula. Cape York Peninsula Land Use Strategy. Project Report. 8/ #3544. Queensland Coastal Wetland Resources: The Whitsunday Region. Project Report.Information Series QI01065. 9/ #3545. Queensland Coastal Wetland Resources: Round Hill Head to Tin Can Inlet. Project Report. Information Series QI99081.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A project to allow the resource assessment of tidal wetland vegetation of western Cape York Peninsula, in north Queensland, was undertaken as part of the longterm assessment of the coastal fisheries resources of Queensland. The project incorporated a littoral invertebrate fauna component. Extending from May 1993 to December 1994, fieldwork was undertaken in May 1993, November 1993 and April 1994. The aims of this project were to: • obtain baseline information on the distribution of marine plants of western Cape York Peninsula; • commence a preliminary assessment of the littoral invertebrate fauna and their habitat requirements with a view to extending knowledge of their biogeographic affinities; • perform biogeographic classification of the tidal wetlands at a meso and local scale for marine conservation planning; • evaluate the conservation values of the areas investigated from the viewpoint of fisheries productivity and as habitat for important/threatened species. Dataset URL Link: Queensland Coastal Wetlands Resources Mapping data. [Dataset]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drought during the pre-flowering stage can increase yield of peanut. There is limited information on genotypic variation for tolerance to and recovery from pre-flowering drought (PFD) and more importantly the physiological traits underlying genotypic variation. The objectives of this study were to determine the effects of moisture stress during the pre-flowering phase on pod yield and to understand some of the physiological responses underlying genotypic variation in response to and recovery from PFD. A glasshouse and field experiments were conducted at Khon Kaen University, Thailand. The glasshouse experiment was a randomized complete block design consisting of two watering regimes, i.e. fully-irrigated control and 1/3 available soil water from emergence to 40 days after emergence followed by adequate water supply, and 12 peanut genotypes. The field experiment was a split-plot design with two watering regimes as main-plots, and 12 peanut genotypes as sub-plots. Measurements of N-2 fixation, leaf area (LA) were made in both experiments. In addition, root growth was measured in the glasshouse experiment. Imposition of PFD followed by recovery resulted in an average increase in yield of 24 % (range from 10 % to 57 %) and 12 % (range from 2 % to 51 %) in the field and glasshouse experiments, respectively. Significant genotypic variation for N-2 fixation, LA and root growth was also observed after recovery. The study revealed that recovery growth following release of PFD had a stronger influence on final yield than tolerance to water deficits during the PFD. A combination of N-2 fixation, LA and root growth accounted for a major portion of the genotypic variation in yield (r = 0.68-0.93) suggesting that these traits could be used as selection criteria for identifying genotypes with rapid recovery from PFD. A combined analysis of glasshouse and field experiments showed that LA and N-2 fixation during the recovery had low genotype x environment interaction indicating potential for using these traits for selecting genotypes in peanut improvement programs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Each Agrilink kit has been designed to be both comprehensive and practical. As the kits are arranged to answer questions of increasing complexity, they are useful references for both new and experienced producers of specific crops. Agrilink integrates the technology of horticultural production with the management of horticultural enterprises. REPRINT INFORMATION - PLEASE READ! For updated information please call 13 25 23 or visit the website www.deedi.qld.gov.au (Select: Queensland Industries – Agriculture link) This publication has been reprinted as a digital book without any changes to the content published in 2004. We advise readers to take particular note of the areas most likely to be out-of-date and so requiring further research: see detailed information on first page of the kit. Even with these limitations we believe this information kit provides important and valuable information for intending and existing growers. This publication was last revised in 2004. The information is not current and the accuracy of the information cannot be guaranteed by the State of Queensland. This information has been made available to assist users to identify issues involved in the production of brassica. This information is not to be used or relied upon by users for any purpose which may expose the user or any other person to loss or damage. Users should conduct their own inquiries and rely on their own independent professional advice. While every care has been taken in preparing this publication, the State of Queensland accepts no responsibility for decisions or actions taken as a result of any data, information, statement or advice, expressed or implied, contained in this publication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2002, AFL Queensland and the Brisbane Lions Football Club approached the Department of Primary Industries and Fisheries (Queensland) for advice on improving their Premier League sports fields. They were concerned about player safety and dissatisfaction with playing surfaces, particularly uneven turf cover and variable under-foot conditions. They wanted to get the best from new investments in ground maintenance equipment and irrigation infrastructure. Their sports fields were representative of community-standard, multi-use venues throughout Australia; generally ‘natural’ soil fields, with low maintenance budgets, managed by volunteers. Improvements such as reconstruction, drainage, or regular re-turfing are generally not affordable. Our project aimed to: (a) Review current world practice and performance benchmarks; (b) Demonstrate best-practice management for community-standard fields; (c) Adapt relevant methods for surface performance testing; (d) Assess current soils, and investigate useful amendments; (e) Improve irrigation system performance; and (e) Build industry capacity and encourage patterns for ongoing learning. Most global sports field research focuses on elite, sand-based fields. We adjusted elite standards for surface performance (hardness, traction, soil moisture, evenness, sward cover/height) and maintenance programs, to suit community-standard fields with lesser input resources. In regularly auditing ground conditions across 12 AFLQ fields in SE QLD, we discovered surface hardness (measured by Clegg Hammer) was the No. 1 factor affecting player safety and surface performance. Other important indices were turf coverage and surface compaction (measured by penetrometer). AFLQ now runs regularly audits affiliated fields, and closes grounds with hardness readings greater than 190 Gmax. Aerating every two months was the primary mechanical practice improving surface condition and reducing hardness levels to < 110 Gmax on the renovated project fields. With irrigation installation, these fields now record surface conditions comparable to elite fields. These improvements encouraged many other sporting organisations to seek advice / assistance from the project team. AFLQ have since substantially invested in an expanded ground improvement program, to cater for this substantially increased demand. In auditing irrigation systems across project fields, we identified low maintenance (with < 65% of sprinklers operating optimally) as a major problem. Retrofitting better nozzles and adjusting sprinklers improved irrigation distribution uniformity to 75-80%. Research showed that reducing irrigation frequency to weekly, and preparedness to withhold irrigation longer after rain, reduced irrigation requirement by 30-50%, compared to industry benchmarks of 5-6 ML/ha/annum. Project team consultation with regulatory authorities enhanced irrigation efficiency under imposed regional water restrictions. Laboratory studies showed incorporated biosolids / composts, or topdressed crumb rubber, improved compaction resistance of soils. Field evaluations confirmed compost incorporation significantly reduced surface hardness of high wear areas in dry conditions, whilst crumb rubber assisted turf persistence into early winter. Neither amendment was a panacea for poor agronomic practices. Under the auspices of the project Trade Mark Sureplay®, we published > 80 articles, and held > 100 extension activities involving > 2,000 participants. Sureplay® has developed a multi-level curator training structure and resource materials, subject to commercial implementation. The partnerships with industry bodies (particularly AFLQ), frequent extension activities, and engagement with government/regulatory sectors have been very successful, and are encouraged for any future work. Specific aspects of sports field management for further research include: (a) Understanding of factors affecting turf wear resistance and recovery, to improve turf persistence under wear; (b) Simple tests for pinpointing areas of fields with high hardness risk; and (c) Evaluation of new irrigation infrastructure, ‘water-saving’ devices, and irrigation protocols, in improving water use and turf cover outcomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite recent flooding in eastern Australia, the availability/quality of irrigation water is a long-term issue for Australian vegetable growers. To survive, producers are told to implement new technologies. However, there is often little practical information investigating which improvements could make a real difference, and keep production profitable. In an Horticulture Australia Ltd three year project, scientists from the Department of Employment, Economic Development and Innovation (QLD), CSIRO, Department of Industry and Investment (NSW), and the National Centre for Engineering in Agriculture, evaluated practical irrigation improvements. We conducted experiments and case studies on farms in southern Queensland and Riverina vegetable districts, with over 100 extension events, including irrigation workshops, conferences, and field days.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report provides an evaluation of the behaviours and purchasing drivers of key sweetpotato consumers defined by Nielsen consumer research as Established Couples (two or more adults with no children 17 and under, and head of house 35-59), Senior Couples (two or more adults with no children 17 or under, and head of house 60 or over), and Independent Singles (one person household 35 or over, no children 17 or under). Research was qualitative in nature. Methods used included focus groups, depth interviews and shop-a-longs. The report found that preferences for sweetpotato amongst these groups were varied. In general a smaller torpedo shaped vegetable was valued for ease of preparation and the convenience of being of sufficient size for a meal for two. Satisfaction with sweetpotato was high with negative comments on quality exceedingly rare within discussions. However, shop-a-longs revealed that some quality issues were apparent at retail such as withered product, pitting and occasionally damage. A display with stock resting in any amount of water was a barrier to purchase for consumers and this was apparent on two out 15 occasions. A high quality sweetpotato was of a deep orange/red colour, had a smooth skin and was extremely dense and hard. An inferior sweetpotato was wrinkly, spongy, pitted and damaged. Awareness of sweetpotato was a relatively recent phenomenon amongst the respondents of this study with most recalling eating the vegetable in the last five to 10 years. Life-time eating patterns emerged as a consequence of childhood food experiences such as growing up with a ‘meat and three’ veg philosophy and traditional Australian meals. However, this was dependent on cultural background and those with ties to diverse cultures were more likely to have always known of the vegetable. Sweetpotato trial and consumption coincided with a breaking away from these traditional patterns, or was integrated into conventional meals such as a baked vegetable to accompany roasts. Increased health consciousness also led to awareness of the vegetable. A primary catalyst for consumption within the Established and Senior Couples groups was the health benefits associated with sweetpotato. Consumers had very little knowledge of the specific health properties of the vegetable and were surprised at the number of benefits consumption provided. Sweetpotato was important for diabetics for its low Glycemic Index status. Top-of-the-mind awareness of the vegetable resulted from the onset of the disease. Increasing fibre was a key motive for this demographic and this provided a significant link between consumption and preventing bowel cancer. For those on a weight loss regime, sweetpotato was perceived as a tasty, satisfying food that was low in carbohydrates. Swapping behaviours where white potato was replaced by sweetpotato was often a response to these health concerns. Other health properties mentioned by participants through the course of the research included the precursor β-carotene and Vitamins A & C. The sweetpotato was appreciated for its hedonic and timesaving qualities. For consumers with a high involvement in food, the vegetable was valued for its versatility in meals. These consumers took pride in cooking and the flavour and texture of sweetpotato lent itself to a variety of meals such as soups, salads, roasts, curries, tagines and so on. Participants who had little time or desire to prepare and cook meals valued sweetpotato because it was an easy way to add colour and variety to the plate and because including an orange vegetable to meals is a shortcut to ensuring vitamin intake. Several recommendations are made to the sweetpotato industry. • Vigorously promote the distinct nutritional and health properties of sweetpotatoes, particularly if they can be favourably compared to other vegetables or foods • Promote the salient properties to specific targets such as diabetics, those that are at risk to bowel cancer, and those embarking on a weight-loss regime. Utilise specialist channels of communication such as diabetic magazines and websites • Promote styles of cooking of sweetpotato that would appeal to traditionalists such as roasts and BBQs • Promote the vegetable as a low maintenance vegetable, easy to store, easy to cook and particularly focusing on it as a simple way to boost the appearance and nutritional value of meals. • Promote the vegetable to high food involvement consumers through exotic recipes and linking it to feelings of accomplishment with cooking • Promote the versatility of the vegetable • Devise promotions that link images and tone of communications with enjoying life to the fullest, having time to enjoy family and grandchildren, and of partaking in social activitiesEducate retailers on consumer perceptions of quality and ensuring moisture and mould is not present at displays Qualitative information while providing a wealth of detail cannot be extrapolated to the overall target population and this may be considered a limitation to the research. However, within research theory, effective quantitative design is believed to stem from the insights developed from qualitative studies. • Develop and implement a quantitative study on sweetpotato attitudes and behaviours based on the results of this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The availability and quality of irrigation water has become an issue limiting productivity in many Australian vegetable regions. Production is also under competitive pressure from supply chain forces. Producers look to new technologies, including changing irrigation infrastructure, exploring new water sources, and more complex irrigation management, to survive these stresses. Often there is little objective information investigating which improvements could improve outcomes for vegetable producers, and external communities (e.g. meeting NRM targets). This has led to investment in inappropriate technologies, and costly repetition of errors, as business independently discover the worth of technologies by personal experience. In our project, we investigated technology improvements for vegetable irrigation. Through engagement with industry and other researchers, we identified technologies most applicable to growers, particularly those that addressed priority issues. We developed analytical tools for ‘what if’ scenario testing of technologies. We conducted nine detailed experiments in the Lockyer Valley and Riverina vegetable growing districts, as well as case studies on grower properties in southern Queensland. We investigated root zone monitoring tools (FullStop™ wetting front detectors and Soil Solution Extraction Tubes - SSET), drip system layout, fertigation equipment, and altering planting arrangements. Our project team developed and validated models for broccoli, sweet corn, green beans and lettuce, and spreadsheets for evaluating economic risks associated with new technologies. We presented project outcomes at over 100 extension events, including irrigation showcases, conferences, field days, farm walks and workshops. The FullStops™ were excellent for monitoring root zone conditions (EC, nitrate levels), and managing irrigation with poor quality water. They were easier to interpret than the SSET. The SSET were simpler to install, but required wet soil to be reliable. SSET were an option for monitoring deeper soil zones, unsuitable for FullStop™ installations. Because these root zone tools require expertise, and are labour intensive, we recommend they be used to address specific problems, or as a periodic auditing strategy, not for routine monitoring. In our research, we routinely found high residual N in horticultural soils, with subsequently little crop yield response to additional nitrogen fertiliser. With improved irrigation efficiency (and less leaching), it may be timely to re-examine nitrogen budgets and recommendations for vegetable crops. Where the drip irrigation tube was located close to the crop row (i.e. within 5-8 cm), management of irrigation was easier. It improved nitrogen uptake, water use efficiency, and reduced the risk of poor crop performance through moisture stress, particularly in the early crop establishment phases. Close proximity of the drip tube to the crop row gives the producer more options for managing salty water, and more flexibility in taking risks with forecast rain. In many vegetable crops, proximate drip systems may not be cost-effective. The next best alternative is to push crop rows closer to the drip tube (leading to an asymmetric row structure). The vegetable crop models are good at predicting crop phenology (development stages, time to harvest), input use (water, fertiliser), environmental impacts (nutrient, salt movement) and total yields. The two immediate applications for the models are understanding/predicting/manipulating harvest dates and nitrogen movements in vegetable cropping systems. From the economic tools, the major influences on accumulated profit are price and yield. In doing ‘what if’ analyses, it is very important to be as accurate as possible in ascertaining what the assumed yield and price ranges are. In most vegetable production systems, lowering the required inputs (e.g. irrigation requirement, fertiliser requirement) is unlikely to have a major influence on accumulated profit. However, if a resource is constraining (e.g. available irrigation water), it is usually most profitable to maximise return per unit of that resource.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genus name Limnocharis is derived from the Greek limno (meaning marsh or pond) and charis (meaning grace) (Haynes and Holm-Nielson 1992) and flava is Latin for yellow. The genus is generally accepted to have two species, Limnocharis flava (Linneaus) Buchenau 1868 and L. laforestii (Duchass. ex Griseb) 1858. L. flava was first named Alisma flava by Linneaus in 1753 (Haynes and Holm-Nielsen 1986). Since then, other synonyms have included Damasonium flavum Mill. 1772, Limnocharis emarginata Humb. and Bonpl. 1808, Limnocharis plumieri Rich. 1815, Limnocharis laforestii Duchas. ex Griseb (1858) and Limnocharis mattogrossensis O. Ktze. (1893) (Woodson and Schery 1943).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new approach for the simultaneous identification of the viruses and vectors responsible for tomato yellow leaf curl disease (TYLCD) epidemics is presented. A panel of quantitative multiplexed real-time PCR assays was developed for the sensitive and reliable detection of Tomato yellow leaf curl virus-Israel (TYLCV-IL), Tomato leaf curl virus (ToLCV), Bemisia tabaci Middle East Asia Minor 1 species (MEAM1, B biotype) and B.tabaci Mediterranean species (MED, Q biotype) from either plant or whitefly samples. For quality-assurance purposes, two internal control assays were included in the assay panel for the co-amplification of solanaceous plant DNA or B.tabaci DNA. All assays were shown to be specific and reproducible. The multiplexed assays were able to reliably detect as few as 10 plasmid copies of TYLCV-IL, 100 plasmid copies of ToLCV, 500fg B.tabaci MEAM1 and 300fg B.tabaci MED DNA. Evaluated methods for routine testing of field-collected whiteflies are presented, including protocols for processing B.tabaci captured on yellow sticky traps and for bulking of multiple B.tabaci individuals prior to DNA extraction. This work assembles all of the essential features of a validated and quality-assured diagnostic method for the identification and discrimination of tomato-infecting begomovirus and B.tabaci vector species in Australia. This flexible panel of assays will facilitate improved quarantine, biosecurity and disease-management programmes both in Australia and worldwide.