14 resultados para Heat of sorption

em eResearch Archive - Queensland Department of Agriculture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: In spite of the extensive use of phosphine fumigation around the world to control insects in stored grain, and the knowledge that grain sorbs phosphine, the effect of concentration on sorption has not been quantified. A laboratory study was undertaken, therefore, to investigate the effect of phosphine dose on sorption in wheat. Wheat was added to glass flasks to achieve filling ratios of 0.25-0.95, and the flasks were sealed and injected with phosphine at 0.1-1.5 mg L-1 based on flask volume. Phosphine concentration was monitored for 8 days at 25°C and 55% RH. RESULTS: When sorption occurred, phosphine concentration declined with time and was approximately first order, i.e. the data fitted an exponential decay equation. Percentage sorption per day was directly proportional to filling ratio, and was negatively correlated with dose for any given filling ratio. Based on the results, a tenfold increase in dose would result in a halving of the sorption constant and the percentage daily loss. Wheat was less sorptive if it was fumigated for a second time. CONCLUSIONS: The results have implications for the use of phosphine for control of insects in stored wheat. This study shows that dose is a factor that must be considered when trying to understand the impact of sorption on phosphine concentration, and that there appears to be a limit to the capacity of wheat to sorb phosphine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sulfuryl fluoride (SF) has been developed as a fumigant for control of insect pests in stored grain. However, there is very limited information on the sorption behaviour of this fumigant, which can be critical to its bioactivity, application and potential for residues. We undertook a comprehensive laboratory study of the sorption and desorption of SF by wheat (bread and durum), flour and semolina at 15, 25 and 35 °C, moisture contents 12% and 15%, and concentration × time combinations at CT = 1500 mgh/L (4.167 mg/L × 360 h, 8.928 mg/L × 168 h and 31.25 mg/L × 48 h). At each dosage, sorption rate increased as commodity temperature and moisture content increased. The highest rates of sorption occurred at 35 °C and 15% m.c., and lowest rates at 15 °C and 12% m.c., and the rate was independent of initial concentration. Sorption followed first order reaction kinetics described by the exponential decay equation, Ct = C0·e−k*t, where k is the sorption rate constant. The most important factors determining the rate of sorption were commodity particle size (exposed surfaces) and temperature. Little sorption of fumigant occurred within the first 24 h whereas longer fumigation times resulted in significant sorption. Unbound SF was rapidly lost from the commodity upon aeration with no further desorption detected under any of the test conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Wheat can be stored for many months before being fumigated with phosphine to kill insects, so a study was undertaken to investigate whether the sorptive capacity of wheat changes as it ages. Wheat was stored at 15 or 25C and 55% RH for up to 5.5 months, and samples were fumigated at intervals to determine sorption. Sealed glass flasks (95% full) were injected with 1.5 mg L-1 of phosphine based on flask volume. Concentrations were monitored for 11 days beginning 2 h after injection. Some wheat samples were refumigated after a period of ventilation. Several fumigations of wheat were conducted to determine the pattern of sorption during the first 24 h. RESULTS: Phosphine concentration declined exponentially with time from 2 h after injection. Rate of sorption decreased with time spent in storage at either 15 or 25C and 55% RH. Rate of sorption tended to be lower when wheat was refumigated, but this could be explained by time in storage rather than by refumigation per se. The data from the 24 h fumigations did not fit a simple exponential decay equation. Instead, there was a rapid decline in the first hour, with phosphine concentration falling much more slowly thereafter. CONCLUSIONS: The results have implications for phosphine fumigation of insects in stored wheat. Both the time wheat has spent in storage and the temperature at which it has been stored are factors that must be considered when trying to understand the impact of sorption on phosphine concentrations in commercial fumigations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fluidised bed-heat pump drying technology offers distinctive advantages over the existing drying technology employed in the Australian food industry. However, as is the case with many other examples of innovations that have had clear relative advantages, the rates of adoption and diffusion of this technology have been very slow. "Why does this happen?" is the theme of this research study that has been undertaken with an objective to analyse a range of issues related to the market acceptance of technological innovations. The research methodology included the development of an integrated conceptual model based on an extensive review of literature in the areas of innovation diffusion, technology transfer and industrial marketing. Three major determinants associated with the market acceptance of innovations were identified as the characteristics of the innovation, adopter information processing capability and the influence of the innovation supplier on the adoption process. This was followed by a study involving more than 30 small and medium enterprises identified as potential adopters of fluidised bed-heat pump drying technology in the Australian food industry. The findings revealed that judgment was the key evaluation strategy employed by potential adopters in the particular industry sector. Further, it was evidenced that the innovations were evaluated against a predetermined criteria covering a range of aspects with emphasis on a selected set of attributes of the innovation. Implication of these findings on the commercialisation of fluidised bed-heat pump drying technology was established, and a series of recommendations was made to the innovation supplier (DPI/FT) enabling it to develop an effective commercialisation strategy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The leaching of phosphorus (P) within soils can be a limiting consideration for the sustainable operation of intensive livestock enterprises. Sorption curves are widely used to assist estimation of P retention, though the effect of effluent constituents on their accuracy is not well understood. We conducted a series of P-sorption-desorption batch experiments with an Oxic Haplustalf (soil 1), Haplusterts (soils 2 and 3), and a Natrustalf (soil 4). Phosphorus sources included effluent, orthophosphate-P in a matrix replicating the effluent's salt constituents (the reference solution), and an orthophosphate-P solution. Treated soils were incubated for up to 193 days before sequential desorption extraction. Effluent constituents, probably the organic or particulate components, temporarily increased the vulnerability of sorbed-P to desorption. The increase in vulnerability was removed by 2-113 days of incubation (25 degrees C). Despite vigorous extraction for 20 consecutive days, some P sorbed as part of the treatments of soils 1 and 2 was not desorbed. The increased vulnerability due to effluent constituents lasted a maximum of about one cropping season and, for all other treatments, adsorption curves overestimated vulnerability to desorption. Therefore, adsorption curves provide a conservative estimate of vulnerability to desorption where effluent is used in continued crop production in these soils.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Environmental heat can reduce conception rates (the proportion of services that result in pregnancy) in lactating dairy cows. The study objectives were to identify periods of exposure relative to the service date in which environmental heat is most closely associated with conception rates, and to assess whether the total time cows are exposed to high environmental heat within each 24-h period is more closely associated with conception rates than is the maximum environmental heat for each 24-h period. A retrospective observational study was conducted in 25 predominantly Holstein-Friesian commercial dairy herds located in Australia. Associations between weather and conception rates were assessed using 16,878 services performed over a 21-mo period. Services were classified as successful based on rectal palpation. Two measures of heat load were defined for each 24-h period: the maximum temperature-humidity index (THI) for the period, and the number of hours in the 24-h period when the THI was >72. Conception rates were reduced when cows were exposed to a high heat load from the day of service to 6 d after service, and in wk -1. Heat loads in wk -3 to -5 were also associated with reduced conception rates. Thus, management interventions to ameliorate the effects of heat load on conception rates should be implemented at least 5 wk before anticipated service and should continue until at least 1 wk after service. High autocorrelations existed between successive daily values in both measures, and associations between day of heat load relative to service day and conception rates differed substantially when ridge regression was used to account for this autocorrelation. This indicates that when assessing the effects of heat load on conception rates, the autocorrelation in heat load between days should be accounted for in analyses. The results suggest that either weekly averages or totals summarizing the daily heat load are adequate to describe heat load when assessing effects on conception rates in lactating dairy cows.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ability to initiate and manipulate flowering with KClO3 allows flowering of longan, to be triggered outside of the normal flowering season (July-September) in Australia. Fruit maturity following normal flowering will occur approximately six-eight months (180-220 days) from flowering, depending on variety. Out of season flowering will result in differing times to maturity due to different temperature regimes during the maturity period. Knowing how long fruit will take to mature from different KClO3 application dates is potentially a valuable tool for growers to use as it would allow them to time their applications with market opportunities, e.g. Chinese New Year, periods of low volumes or periods of high prices. A simple heat-sum calculation was shown to reliably quantify fruit maturity periods, 2902 and 3432 growing degree days for Kohala and Biew Kiew respectively. Growers can use heat-sum as a predictive tool to allow for efficient planning of harvesting, packaging and freight requirements.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vapour heat treatment of honey gold mango for access to the Japanese market.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Statistical studies of rainfed maize yields in the United States(1) and elsewhere(2) have indicated two clear features: a strong negative yield response to accumulation of temperatures above 30 degrees C (or extreme degree days (EDD)), and a relatively weak response to seasonal rainfall. Here we show that the process-based Agricultural Production Systems Simulator (APSIM) is able to reproduce both of these relationships in the Midwestern United States and provide insight into underlying mechanisms. The predominant effects of EDD in APSIM are associated with increased vapour pressure deficit, which contributes to water stress in two ways: by increasing demand for soil water to sustain a given rate of carbon assimilation, and by reducing future supply of soil water by raising transpiration rates. APSIM computes daily water stress as the ratio of water supply to demand, and during the critical month of July this ratio is three times more responsive to 2 degrees C warming than to a 20% precipitation reduction. The results suggest a relatively minor role for direct heat stress on reproductive organs at present temperatures in this region. Effects of elevated CO2 on transpiration efficiency should reduce yield sensitivity to EDD in the coming decades, but at most by 25%.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of heat stress on dairy production can be separated into 2 distinct causes: those effects that are mediated by the reduced voluntary feed intake associated with heat stress, and the direct physiological and metabolic effects of heat stress. To distinguish between these, and identify their effect on milk protein and casein concentration, mid-lactation Holstein-Friesian cows (n = 24) were housed in temperature-controlled chambers and either subjected to heat stress HS; temperature-humidity index (THI) ~78 or kept in a THI < 70 environment and pair-fed with heat-stressed cows (TN-R) for 7 d. A control group of cows was kept in a THI < 70 environment with ad libitum feeding (TN-AL). A subsequent recovery period (7 d), with THI < 70 and ad libitum feeding followed. Intake accounted for only part of the effects of heat stress. Heat stress reduced the milk protein concentration, casein number, and casein concentration and increased the urea concentration in milk beyond the effects of restriction of intake. Under HS, the proportion in total casein of αS1-casein increased and the proportion of αS2-casein decreased. Because no effect of HS on milk fat or lactose concentration was found, these effects appeared to be the result of specific downregulation of mammary protein synthesis, and not a general reduction in mammary activity. No residual effects were found of HS or TN-R on milk production or composition after THI < 70 and ad libitum intake were restored. Heat-stressed cows had elevated blood concentrations of urea and Ca, compared with TN-R and TN-AL. Cows in TN-R had higher serum nonesterified fatty acid concentrations than cows in HS. It was proposed that HS and TN-R cows may mobilize different tissues as endogenous sources of energy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Characterization of drought environment types (ETs) has proven useful for breeding crops for drought-prone regions. Here we consider how changes in climate and atmospheric carbon dioxide (CO2) concentrations will affect drought ET frequencies in sorghum and wheat systems of Northeast Australia. We also modify APSIM (the Agricultural Production Systems Simulator) to incorporate extreme heat effects on grain number and weight, and then evaluate changes in the occurrence of heat-induced yield losses of more than 10, as well as the co-occurrence of drought and heat. More than six million simulations spanning representative locations, soil types, management systems, and 33 climate projections led to three key findings. First, the projected frequency of drought decreased slightly for most climate projections for both sorghum and wheat, but for different reasons. In sorghum, warming exacerbated drought stresses by raising the atmospheric vapor pressure deficit and reducing transpiration efficiency (TE), but an increase in TE due to elevated CO2 more than offset these effects. In wheat, warming reduced drought stress during spring by hastening development through winter and reducing exposure to terminal drought. Elevated CO2 increased TE but also raised radiation use efficiency and overall growth rates and water use, thereby offsetting much of the drought reduction from warming. Second, adding explicit effects of heat on grain number and grain size often switched projected yield impacts from positive to negative. Finally, although average yield losses associated with drought will remain generally higher than for heat stress for the next half century, the relative importance of heat is steadily growing. This trend, as well as the likely high degree of genetic variability in heat tolerance, suggests that more emphasis on heat tolerance is warranted in breeding programs. At the same time, work on drought tolerance should continue with an emphasis on drought that co-occurs with extreme heat. This article is protected by copyright. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Characterization of drought environment types (ETs) has proven useful for breeding crops for drought-prone regions. Here we consider how changes in climate and atmospheric carbon dioxide (CO2) concentrations will affect drought ET frequencies in sorghum and wheat systems of Northeast Australia. We also modify APSIM (the Agricultural Production Systems Simulator) to incorporate extreme heat effects on grain number and weight, and then evaluate changes in the occurrence of heat-induced yield losses of more than 10%, as well as the co-occurrence of drought and heat. More than six million simulations spanning representative locations, soil types, management systems, and 33 climate projections led to three key findings. First, the projected frequency of drought decreased slightly for most climate projections for both sorghum and wheat, but for different reasons. In sorghum, warming exacerbated drought stresses by raising the atmospheric vapor pressure deficit and reducing transpiration efficiency (TE), but an increase in TE due to elevated CO2 more than offset these effects. In wheat, warming reduced drought stress during spring by hastening development through winter and reducing exposure to terminal drought. Elevated CO2 increased TE but also raised radiation use efficiency and overall growth rates and water use, thereby offsetting much of the drought reduction from warming. Second, adding explicit effects of heat on grain number and grain size often switched projected yield impacts from positive to negative. Finally, although average yield losses associated with drought will remain generally higher than for heat stress for the next half century, the relative importance of heat is steadily growing. This trend, as well as the likely high degree of genetic variability in heat tolerance, suggests that more emphasis on heat tolerance is warranted in breeding programs. At the same time, work on drought tolerance should continue with an emphasis on drought that co-occurs with extreme heat. This article is protected by copyright. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Exposure to hot environments affects milk yield (MY) and milk composition of pasture and feed-pad fed dairy cows in subtropical regions. This study was undertaken during summer to compare MY and physiology of cows exposed to six heat-load management treatments. Seventy-eight Holstein-Friesian cows were blocked by season of calving, parity, milk yield, BW, and milk protein (%) and milk fat (%) measured in 2 weeks prior to the start of the study. Within blocks, cows were randomly allocated to one of the following treatments: open-sided iron roofed day pen adjacent to dairy (CID) + sprinklers (SP); CID only; non-shaded pen adjacent to dairy + SP (NSD + SP); open-sided shade cloth roofed day pen adjacent to dairy (SCD); NSD + sprinkler (sprinkler on for 45 min at 1100 h if mean respiration rate >80 breaths per minute (NSD + WSP)); open-sided shade cloth roofed structure over feed bunk in paddock + 1 km walk to and from the dairy (SCP + WLK). Sprinklers for CID + SP and NSD + SP cycled 2 min on, 12 min off when ambient temperature >26°C. The highest milk yields were in the CID + SP and CID treatments (23.9 L cow−1 day−1), intermediate for NSD + SP, SCD and SCP + WLK (22.4 L cow−1 day−1), and lowest for NSD + WSP (21.3 L cow−1 day−1) (P < 0.05). The highest (P < 0.05) feed intakes occurred in the CID + SP and CID treatments while intake was lowest (P < 0.05) for NSD + WSP and SCP + WLK. Weather data were collected on site at 10-min intervals, and from these, THI was calculated. Nonlinear regression modelling of MY × THI and heat-load management treatment demonstrated that cows in CID + SP showed no decline in MY out to a THI break point value of 83.2, whereas the pooled MY of the other treatments declined when THI >80.7. A combination of iron roof shade plus water sprinkling throughout the day provided the most effective control of heat load.