12 resultados para Hastings, Warren, 1732-1818.
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Context: For over 100 years, control efforts have been unable to stop rabbits causing damage to cattle production and native plants and animals on large properties in arid parts of Australia. Warren destruction by ripping has shown promise, but doubts about long-term success and the perceived expense of treating vast areas have led to this technique not being commonly used. Aims: This study measured the long-term reduction in rabbit activity and calculated the potential cost saving associated with treating just the areas where rabbits are believed to survive drought. Wealso considered whether ripping should be used in a full-scale rabbit control program on a property where rabbits have been exceptionally resilient to the influence of biological and other control measures. Methods: Rabbits were counted along spotlight transects before warrens were ripped and during the two years after ripping, in treated and untreated plots. Rabbit activity was recorded to determine the immediate and long-term impact of ripping, up to seven years after treatment. The costs of ripping warrens within different distances from drought refuge areas were calculated. Key results: Destroying rabbit warrens by ripping caused an immediate reduction in rabbit activity and there were still 98% fewer rabbits counted by spotlight in ripped plots five months after ripping. Seven years after ripping no active warrens were found in ripped plots, whereas 57% of warrens in unripped plots showed signs of rabbit activity. The cost of ripping only the areas where rabbits were likely to seek refuge from drought was calculated to be less than 4%of the cost of ripping all warrens on the property. Conclusions: Destroying rabbit warrens by ripping is a very effective way of reducing rabbit numbers on large properties in arid Australia. Ripping should commence in areas used by rabbits to survive drought. It is possible that no further ripping will be required. Implications: Strategic destruction of warrens in drought refuge areas could provide an alternative to biological control for managing rabbits on large properties in the Australian arid zone.
Resumo:
Rabbits continued to infest Bulloo Downs in southwest Queensland even after rabbit haemorrhagic disease virus (RHDV) had effectively reduced rabbit populations to very low levels in most other arid parts of Australia. Control efforts for over 100 years have all appeared unable to stop rabbits causing damage to cattle production and native plants and animals in the area. In 2001 an experiment established to measure the benefit of rabbit control to biodiversity and cattle production showed warren ripping to cause an immediate reduction in rabbit activity. Three months after ripping there were still 98% fewer rabbits in ripped plots despite these plots being exposed to invasion from surrounding populations. The cost of ripping was high because of the high density of warrens and is prohibitive for a full-scale programme. Nevertheless, ripping warrens just in the rabbit’s drought refuge (2002 -2004) appears to have effectively controlled rabbits over the entire property. Following one good season rabbits still have not recovered where the drought refuge was effectively ripped. Destroying warrens in the areas where rabbits survived droughts achieved a reduction in rabbits of over 99% ompared to a similar area near Coongie Lakes in South Australia. Low rabbit numbers allowed cattle to continue to be run on the property even though the area experienced seven consecutive years with below average rainfall. It still remains to be seen whether rabbits can recover from this low population-base during a run of good seasons. If rabbit numbers remain suppressed after a run of good seasons then rabbit control by destruction of drought refuge could be repeated at Coongie Lakes and other drought refuge areas in the arid zone. Identification and treatment of areas similar to Bulloo Downs where rabbits survive drought may relieve a very large area of arid Australia from the damage caused by rabbits.
Resumo:
Rabbits released in Australia in 1859 spread to most areas of suitable habitat by 1910 causing great damage to the environment and primary industries. Measurement of damage is essential to justify spending money and utilising resources to remove rabbits. Damage to pasture and biodiversity may be irreversible and therefore difficult to measure without comparison with an area that has never suffered such damage. A rabbit proof fence completed in 1906 protected a large part of south east Queensland from rabbits. The Darling Downs Moreton Rabbit Board (DDMRB) continues to maintain the fence and keep the area relatively free of rabbits. This area is unique because it is highly suitable for rabbits and yet it has never ‘experienced’ the damage caused by plagues of uncontrolled rabbits. A study site was established where the DDMRB fence separates an area heavily used by rabbits (‘dirty side’) from an area that has never been infested by rabbits (‘clean side’). The number and location of all rabbit warrens and log piles were recorded. The absence of warrens from the ‘clean side’ shows clearly that the rabbit proof fence has prevented rabbits from establishing warren systems. The ‘dirty side’ is characterised by a high number of warrens, a high density of rabbits, fewer pasture species and low macropod activity. Future work will determine whether the rabbit populations are viable in the absence of rabbit warrens. We plan to radio collar rabbits on both sides of the fence to measure their survival rate. In selected warrens and log piles of varying degrees of complexity and size, rabbits will be trapped and information on reproduction and age structure will be collected. This will allow better targeting of the source of rabbits during control operations. Once the initial comparative analysis of the site has been completed, all rabbit warrens will be destroyed on the dirty side of the fence. After rabbits are removed from this area, monitoring will continue to determine if pasture and biodiversity on opposite sides of the fence begin to mirror each other.
Resumo:
Wild European rabbits are a serious problem to agriculture in Australia, with an estimated annual cost of A$ 113 million. Biological control agents (myxomatosis and rabbit haemorrhagic disease virus) have caused large and sustained declines in rabbit populations throughout Australia. A simulation model incorporates these diseases as well as warren destruction as methods of controlling rabbit populations in Queensland, north eastern Australia. These diseases reduced populations by 90-99% and the combination of these and warren destruction led to 100% control in simulations at six sites across southern Queensland. Increasing monthly pasture growth by 15% had little effect on simulated populations whereas a 15% decrease reduced populations by 0-50%. An increase in temperature of 2.5 °C would lead to a 15-60% decrease in populations. These effects suggest that climate change will lead to a decrease in the population of rabbits in Queensland and a retraction in the northern limit of their distribution in Australia.
Resumo:
The objectives of this study were to predict the potential distribution, relative abundance and probability of habitat use by feral camels in southern Northern Territory. Aerial survey data were used to model habitat association. The characteristics of ‘used’ (where camels were observed) v. ‘unused’ (pseudo-absence) sites were compared. Habitat association and abundance were modelled using generalised additive model (GAM) methods. The models predicted habitat suitability and the relative abundance of camels in southern Northern Territory. The habitat suitability maps derived in the present study indicate that camels have suitable habitat in most areas of southern Northern Territory. The index of abundance model identified areas of relatively high camel abundance. Identifying preferred habitats and areas of high abundance can help focus control efforts.
Resumo:
‘AGRD’ was selected by the breeder, Dr Warren Hunt, from a variant area of winter active turf (probably ‘Tifway’ or ‘Tifgreen’) on a Hong Kong Golf Course in Apr 1996. A selection of this material was imported through vegetative quarantine to New Zealand for evaluation. Following a favourable assessment of its potential as a warm-season turfgrass variety under New Zealand conditions made based on its superior comparative performance relative to other Cynodon accessions in glasshouse and field trials, the New Zealand registered variety ‘Grasslands AgRiDark’ was released in 1999. PBR Certificate Number 3716, Application Number 2004/299, granted 20 January 2009.
Resumo:
The impact of cropping histories (sugarcane, maize and soybean), tillage practices (conventional tillage and direct drill) and fertiliser N in the plant and 1st ratoon (1R) crops of sugarcane were examined in field trials at Bundaberg and Ingham. Average yields at Ingham (Q200) and Bundaberg (Q151) were quite similar in both the plant crop (83 t/ha and 80 t/ha, respectively) and the 1R (89 t/ha v 94 t/ha, respectively), with only minor treatment effects on CCS at each site. Cane yield responses to tillage, break history and N fertiliser varied significantly between sites. There was a 27% yield increase in the plant crop from the soybean fallow at Ingham, with soybeans producing a yield advantage over continuous cane, but there were no clear break effects at Bundaberg - possibly due to a complex of pathogenic nematodes that responded differently to soybeans and maize breaks. There was no carryover benefit of the soybean break into the 1R crop at Ingham, while at Bundaberg the maize break produced a 15% yield advantage over soybeans and continuous cane. The Ingham site recorded positive responses to N fertiliser addition in both the plant (20% yield increase) and 1R (34% yield increase) crops, but there was negligible carryover benefit from plant crop N in the 1R crop, or of a reduced N response after a soybean rotation. By contrast, the Bundaberg site showed no N response in any history in the plant crop, and only a small (5%) yield increase with N applied in the 1R crop. There was again no evidence of a reduced N response in the 1R crop after a soybean fallow. There were no significant effects of tillage on cane yields at either site, although there were some minor interactions between tillage, breaks and N management in the 1R crop at both sites. Crop N contents at Bundaberg were more than 3 times those recorded at Ingham in both the plant and 1R crops, with N concentrations in millable stalk at Ingham suggesting N deficiencies in all treatments. There was negligible additional N recovered in crop biomass from N fertiliser application or soybean residues at the Ingham site. There was additional N recovered in crop biomass in response to N fertiliser and soybean breaks at Bundaberg, but effects were small and fertiliser use efficiencies poor. Loss pathways could not be quantified, but denitrification or losses in runoff were the likely causes at Ingham while leaching predominated at Bundaberg. Results highlight the complexity involved in developing sustainable farming systems for contrasting soil types and climatic conditions. A better understanding of key sugarcane pathogens and their host range, as well as improved capacity to predict in-crop N mineralisation, will be key factors in future improvements to sugarcane farming systems.
Resumo:
Increase water use efficiency and productivity, and reduce energy and water usage and costs, of dairy and fodder enterprises, to reduce costs of milk production.
Resumo:
A leaf-feeding geometrid, Chiasmia assimilis (Warren), was introduced into northern Queensland from South Africa in 2002 as a biological control agent for the invasive woody weed, prickly acacia, Acacia nilotica subsp. indica (Bentham) Brenan. The insect established in infestations in coastal areas between the townships of Ayr and Bowen where the larvae periodically cause extensive defoliation at some localities during summer and autumn. The impact of this herbivory on a number of plant parameters, including shoot length, basal stem diameter, root length, number of leaves, number of branches, and above and below ground biomass was investigated at one coastal site through an insect exclusion trial using potted seedlings and regular spray applications of a systemic insecticide to exclude the biological control agent. Half the seedlings, both sprayed and unsprayed, were placed beneath the prickly acacia canopy, the other half were placed in full sunlight. Larvae of C. assimilis were found on unsprayed seedlings in both situations. The effects of herbivory, however, were significant only for seedlings grown beneath the canopy. At the end of the five-month trial period, shoot length of these seedlings was reduced by 30%, basal stem diameter by 44%, root length by 15%, number of leaves by 97%, above ground biomass by 87%, and below ground biomass by 77% when compared to sprayed seedlings. Implications are that the insect, where established, may reduce seedling growth beneath existing canopies and in turn may help limit the formation of dense infestations. Crown Copyright (C) 2012 Published by Elsevier Inc. All rights reserved.
Resumo:
Extensive resources are allocated to managing vertebrate pests, yet spatial understanding of pest threats, and how they respond to management, is limited at the regional scale where much decision-making is undertaken. We provide regional-scale spatial models and management guidance for European rabbits (Oryctolagus cuniculus) in a 260,791 km(2) region in Australia by determining habitat suitability, habitat susceptibility and the effects of the primary rabbit management options (barrier fence, shooting and baiting and warren ripping) or changing predation or disease control levels. A participatory modelling approach was used to develop a Bayesian network which captured the main drivers of suitability and spread, which in turn was linked spatially to develop high resolution risk maps. Policy-makers, rabbit managers and technical experts were responsible for defining the questions the model needed to address, and for subsequently developing and parameterising the model. Habitat suitability was determined by conditions required for warren-building and by above-ground requirements, such as food and harbour, and habitat susceptibility by the distance from current distributions, habitat suitability, and the costs of traversing habitats of different quality. At least one-third of the region had a high probability of being highly suitable (support high rabbit densities), with the model supported by validation. Habitat susceptibility was largely restricted by the current known rabbit distribution. Warren ripping was the most effective control option as warrens were considered essential for rabbit persistence. The anticipated increase in disease resistance was predicted to increase the probability of moderately suitable habitat becoming highly suitable, but not increase the at-risk area. We demonstrate that it is possible to build spatial models to guide regional-level management of vertebrate pests which use the best available knowledge and capture fine spatial-scale processes.
Resumo:
Modeling the distributions of species, especially of invasive species in non-native ranges, involves multiple challenges. Here, we developed some novel approaches to species distribution modeling aimed at reducing the influences of such challenges and improving the realism of projections. We estimated species-environment relationships with four modeling methods run with multiple scenarios of (1) sources of occurrences and geographically isolated background ranges for absences, (2) approaches to drawing background (absence) points, and (3) alternate sets of predictor variables. We further tested various quantitative metrics of model evaluation against biological insight. Model projections were very sensitive to the choice of training dataset. Model accuracy was much improved by using a global dataset for model training, rather than restricting data input to the species’ native range. AUC score was a poor metric for model evaluation and, if used alone, was not a useful criterion for assessing model performance. Projections away from the sampled space (i.e. into areas of potential future invasion) were very different depending on the modeling methods used, raising questions about the reliability of ensemble projections. Generalized linear models gave very unrealistic projections far away from the training region. Models that efficiently fit the dominant pattern, but exclude highly local patterns in the dataset and capture interactions as they appear in data (e.g. boosted regression trees), improved generalization of the models. Biological knowledge of the species and its distribution was important in refining choices about the best set of projections. A post-hoc test conducted on a new Partenium dataset from Nepal validated excellent predictive performance of our “best” model. We showed that vast stretches of currently uninvaded geographic areas on multiple continents harbor highly suitable habitats for Parthenium hysterophorus L. (Asteraceae; parthenium). However, discrepancies between model predictions and parthenium invasion in Australia indicate successful management for this globally significant weed. This article is protected by copyright. All rights reserved.
Resumo:
Modeling the distributions of species, especially of invasive species in non-native ranges, involves multiple challenges. Here, we developed some novel approaches to species distribution modeling aimed at reducing the influences of such challenges and improving the realism of projections. We estimated species-environment relationships with four modeling methods run with multiple scenarios of (1) sources of occurrences and geographically isolated background ranges for absences, (2) approaches to drawing background (absence) points, and (3) alternate sets of predictor variables. We further tested various quantitative metrics of model evaluation against biological insight. Model projections were very sensitive to the choice of training dataset. Model accuracy was much improved by using a global dataset for model training, rather than restricting data input to the species’ native range. AUC score was a poor metric for model evaluation and, if used alone, was not a useful criterion for assessing model performance. Projections away from the sampled space (i.e. into areas of potential future invasion) were very different depending on the modeling methods used, raising questions about the reliability of ensemble projections. Generalized linear models gave very unrealistic projections far away from the training region. Models that efficiently fit the dominant pattern, but exclude highly local patterns in the dataset and capture interactions as they appear in data (e.g. boosted regression trees), improved generalization of the models. Biological knowledge of the species and its distribution was important in refining choices about the best set of projections. A post-hoc test conducted on a new Partenium dataset from Nepal validated excellent predictive performance of our “best” model. We showed that vast stretches of currently uninvaded geographic areas on multiple continents harbor highly suitable habitats for Parthenium hysterophorus L. (Asteraceae; parthenium). However, discrepancies between model predictions and parthenium invasion in Australia indicate successful management for this globally significant weed. This article is protected by copyright. All rights reserved.