4 resultados para HAMILTONIAN-FORMULATION
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The project will provide information on the use of phytase in sorghum based diets so that producers and nutrionists will have confidence in vegetable protein based diets.
Resumo:
Amino functionalised mesoporous silica nanoparticles (AM-41) have been identified as a promising vaccine delivery material. The capacity of AM-41 to stabilise vaccine components at ambient temperature (23–27 °C) was determined by adsorbing the model antigen ovalbumin (OVA) to AM-41 particles (OVA-41). The OVA-41 was successfully freeze-dried using the excipients 5% trehalose and 1% PEG8000. Both the immunological activity of OVA and the nanoparticle structure were maintained following two months storage at ambient temperature. The results of immunisation studies in mice with reconstituted OVA-41 demonstrated the induction of humoral and cell-meditated immune responses. The capacity of AM-41 particles to facilitate ambient storage of vaccine components without loss of immunological potency will underpin the further development of this promising vaccine delivery platform.
Formulation and characterization of drug-loaded microparticles using distiller’s dried grain kafirin
Resumo:
Kafirin, a protein extracted from sorghum grain has been formulated into microparticles, and proposed for use as a delivery system due to the resistance of kafirin to upper gastrointestinal digestion. However, extracting kafirin from sorghum “distiller’s dried grains with solubles” (DDGS) may be more efficient as the carbohydrate component has been removed by fermentation. This study investigated the properties and use of kafirin extracted from DDGS to formulate microparticles. Prednisolone, an anti-inflammatory drug that could benefit from a delayed and targeted delivery system to the colon, was loaded into DDGS kafirin microparticles by phase separation using sodium chloride. Scanning electron micrographs revealed that the empty and prednisolone-loaded microparticles were round in shape and varied in size. Surface binding studies indicated prednisolone was loaded within the microparticles rather than being solely bound on the surface. These findings demonstrate DDGS kafirin can be formulated into microparticles and loaded with medication. Future studies could investigate the potential applications of DDGS kafirin microparticles as an orally administered targeted drug-delivery system.
Formulation and characterization of drug-loaded microparticles using distiller’s dried grain kafirin
Resumo:
Kafirin, a protein extracted from sorghum grain has been formulated into microparticles, and proposed for use as a delivery system due to the resistance of kafirin to upper gastrointestinal digestion. However, extracting kafirin from sorghum distillers dried grains with solubles (DDGS) may be more efficient as the carbohydrate component has been removed by fermentation. This study investigated the properties and use of kafirin extracted from DDGS to formulate microparticles. Prednisolone, an anti-inflammatory drug that could benefit from a delayed and targeted delivery system to the colon, was loaded into DDGS kafirin microparticles by phase separation using sodium chloride. Scanning electron micrographs revealed that the empty and prednisolone-loaded microparticles were round in shape and varied in size. Surface binding studies indicated prednisolone was loaded within the microparticles rather than being solely bound on the surface. These findings demonstrate DDGS kafirin can be formulated into microparticles and loaded with medication. Future studies could investigate the potential applications of DDGS kafirin microparticles as an orally administered targeted drug-delivery system.