4 resultados para HALO NUCLEI
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Obesity is associated with many chronic disease states, such as diabetes mellitus, coronary disease and certain cancers, including those of the breast and colon. There is a growing body of evidence that links phytochemicals with the inhibition of adipogenesis and protection against obesity. Mangoes (Mangifera indica L.) are tropical fruits that are rich in a diverse array of bioactive phytochemicals. In this study, methanol extracts of peel and flesh from three archetypal mango cultivars; Irwin, Nam Doc Mai and Kensington Pride, were assessed for their effects on a 3T3-L1 pre-adipocyte cell line model of adipogenesis. High content imaging was used to assess: lipid droplets per cell, lipid droplet area per cell, lipid droplet integrated intensity, nuclei count and nuclear area per cell. Mango flesh extracts from the three cultivars did not inhibit adipogenesis; peel extracts from both Irwin and Nam Doc Mai, however, did so with the Nam Doc Mai extract most potent at inhibiting adipogenesis. Peel extract from Kensington Pride promoted adipogenesis. The inhibition of adipogenesis by Irwin (100 mu g mL(-1)) and Nam Doc Mai peel extracts (50 and 100 mu g mL(-1)) was associated with an increase in the average nuclear area per cell; similar effects were seen with resveratrol, suggesting that these extracts may act through pathways similar to resveratrol. These results suggest that differences in the phytochemical composition between mango cultivars may influence their effectiveness in inhibiting adipogenesis, and points to mango fruit peel as a potential source of nutraceuticals.
Resumo:
Plant phytochemicals are increasingly recognised as sources of bioactive molecules which may have potential benefit in many health conditions. In mangoes, peel extracts from different cultivars exhibit varying effects on adipogenesis in the 3T3-L1 adipocyte cell line. In this study, the effects of preparative HPLC fractions of methanol peel extracts from Irwin, Nam Doc Mai and Kensington Pride mangoes were evaluated. Fraction 1 contained the most hydrophilic components while subsequent fractions contained increasingly more hydrophobic components. High content imaging was used to assess mango peel fraction effects on lipid accumulation, nuclei count and nuclear area in differentiating 3T3-L1 cells. For all three mango cultivars, the more hydrophilic peel fractions 1-3 inhibited lipid accumulation with greater potency than the more hydrophobic peel fractions 4. For all three cultivars, the more lipophilic fraction 4 had concentrations that enhanced lipid accumulation greater than fractions 1-3 as assessed by lipid droplet integrated intensity. The potency of this fraction 4 varied significantly between cultivars. Using mass spectrometry, five long chain free fatty acids were detected in fraction 4; these were not present in any other peel extract fractions. Total levels varied between cultivars, with Irwin fraction 4 containing the highest levels of these free fatty acids. Lipophilic components appear to be responsible for the lipid accumulation promoting effects of some mango extracts and are the likely cause of the diverse effects of peel extracts from different mango cultivars on lipid accumulation.
Resumo:
During spermatogenesis, giant tiger shrimp (Penaeus monodon) from Queensland, eastern Australia had a high proportion of testicular spermatids that appeared 'hollow' because their nuclei were not visible with the haematoxylin and eosin stain. When examined by transmission electron microscopy, the nuclei of hollow spermatids contained highly decondensed chromatin, with large areas missing fibrillar chromatin. Together with hollow spermatids, testicular pale enlarged (PE) spermatids with weakly staining and marginated chromatin were observed. Degenerate-eosinophilic-clumped (DEC) spermatids that appeared as aggregated clumps were also present in testes tubules. Among 171 sub-adult and adult P. monodon examined from several origins, 43% displayed evidence of hollow spermatids in the testes, 33% displayed PE spermatids and 15% displayed DEC spermatids. These abnormal sperm were also found at lower prevalence in the vas deferens and spermatophore. We propose 'Hollow Sperm Syndrome (HSS)' to describe this abnormal sperm condition as these morphological aberrations have yet to be described in penaeid shrimp. No specific cause of HSS was confirmed by examining either tank or pond cultured shrimp exposed to various stocking densities, temperatures, salinities, dietary and seasonal factors. Compared with wild broodstock, HSS occurred at higher prevalence and severity among sub-adults originating from farms, research ponds and tanks. Further studies are required to establish what physiological, hormonal or metabolic processes may cause HSS and whether it compromises the fertility of male P. monodon.
Resumo:
. Management of the invasive Vachellia nilotica indica infesting tropical grasslands of Northern Australia has remained unsuccessful to date. Presently Anomalococcus indicus is considered a potential agent in the biological management of V. n. indica. Whereas generic biological details of A. indicus have been known, their feeding activity and details of their mouthparts and the sensory structures that are associated with their feeding action are not known. This paper provides details of those gaps. Nymphal instars I and II feed on cortical-parenchyma cells of young stems of V. n. indica, whereas nymphal instars III and adult females feed on phloem elements of older shoots. Nymphal instars and adults (females) trigger stress symptoms in the feeding tissue with cells bearing enlarged and disfigured nuclei, cytoplasmic shrinkage, cytoplasmic trabeculae, abnormal protuberances and uneven cell wall thickening, unusual cell membrane proliferation, and exhausted and necrosed cells. Continuous nutrient extraction by A. indicus can cause stem death. We provide evidence that A. indicus, by virtue of its continuous feeding activity and intense population build up, can be an effective biological-management agent to regulate populations of V. n. indica in infested areas. © 2014 © 2014 Société entomologique de France.