7 resultados para HABITS

em eResearch Archive - Queensland Department of Agriculture


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of defoliation on Amarillo (Arachis pintoi cv. Amarillo) was studied in a glasshouse and in mixed swards with 2 tropical grasses. In the glasshouse, Amarillo plants grown in pots were subjected to a 30/20°C or 25/15°C temperature regime and to defoliation at 10-, 20- or 30-day intervals for 60 days. Two field plot studies were conducted on Amarillo with either irrigated kikuyu (Pennisetum clandestinum) in autumn and spring or dryland Pioneer rhodes grass (Chloris gayana) over summer and autumn. Treatments imposed were 3 defoliation intervals (7, 14 and 28 days) and 2 residual heights (5 and 10 cm for kikuyu; 3 and 10 cm for rhodes grass) with extra treatments (56 days to 3 cm for both grasses and 21 days to 5 cm for kikuyu). Defoliation interval had no significant effect on accumulated Amarillo leaf dry matter (DM) at either temperature regime. At the higher temperature, frequent defoliation reduced root dry weight (DW) and increased crude protein (CP) but had no effect on stolon DW or in vitro organic matter digestibility (OMD). On the other hand, at the lower temperature, frequent defoliation reduced stolon DW and increased OMD but had no effect on root DW or CP. Irrespective of temperaure and defoliation, water-soluble carbohydrate levels were higher in stolons than in roots (4.70 vs 3.65%), whereas for starch the reverse occured (5.37 vs 9.44%). Defoliating the Amarillo-kikuyu sward once at 56 days to 3 cm produced the highest DM yield in autumn and sprong (582 and 7121 kg/ha DM, respectively), although the Amarillo component and OMD were substantially reduced. Highest DM yields (1726 kg/ha) were also achieved in the Amarillo-rhodes grass sward when defoliated every 56 days to 3 cm, although the Amarillo component was unaffected. In a mixed sward with either kikuyu or rhodes grass, the Amarillo component in the sward was maintained up to a 28-day defoliation interval and was higher when more severely defoliated. The results show that Amarillo can tolerate frequent defoliation and that it can co-exist with tropical grasses of differing growth habits, provided the Amarillo-tropical grass sward is subject to frequent and severe defoliation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Controlled traffic (matching wheel and row spacing) is being promoted as a means to manage soil compaction in the Australian sugar industry. However, machinery limitations dictate that wider row spacings than the standard 1.5-m single row will need to be adopted to incorporate controlled traffic and many growers are reluctant to widen row spacing for fear of yield penalties. To address these concerns, contrasting row configuration and planting density combinations were investigated for their effect on cane and sugar yield in large-scale experiments in the Gordonvale, Tully, Ingham, Mackay, and Bingera (near Bundaberg) sugarcane-growing regions of Queensland, Australia. The results showed that sugarcane possesses a capacity to compensate for different row configurations and planting densities through variation in stalk number and individual stalk weight. Row configurations ranging from 1.5-m single rows (the current industry standard) to 1.8-m dual rows (50 cm between duals), 2.1-m dual (80 cm between duals) and triple ( 65 cm between triples) rows, and 2.3-m triple rows (65 cm between triples) produced similar yields. Four rows (50 cm apart) on a 2.1-m configuration (quad rows) produced lower yields largely due to crop lodging, while a 1.8-m single row configuration produced lower yields in the plant crop, probably due to inadequate resource availability (water stress/limited radiation interception). The results suggest that controlled traffic can be adopted in the Australian sugar industry by changing from a 1.5-m single row to 1.8-m dual row configuration without yield penalty. Further, the similar yields obtained with wider row configurations (2 m or greater with multiple rows) in these experiments emphasise the physiological and environmental plasticity that exists in sugarcane. Controlled traffic can be implemented with these wider row configurations (>2 m), although it will be necessary to carry out expensive modifications to the current harvester and haul-out equipment. There were indications from this research that not all cultivars were suited to configurations involving multiple rows. The results suggest that consideration be given to assessing clones with different growth habits under a range of row configurations to find the most suitable plant types for controlled traffic cropping systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Carp is considered a threat to our native river fish and ecosystems by its ability to adapt to almost any fresh water body and through its feeding and breeding habits, change environmental parameters such as turbidity, light and water temperatures. This project forms part of the Invasive Animal CRC's freshwater program and is part of a strategy to develop control measures for carp. The age and size at maturity for carp in the northern part of their range (ie. Queensland) is currently unknown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project has delivered outcomes that address major agronomic and crop protection issues closely linked to the profitability and sustainability of cotton production enterprises in CQ. From an agronomic perspective, the CQ environment was always though to support economically viable cotton production in a wide sowing window from the middle of September to early January prior to this research. The ideal positioning of Bollgard II varieties in the CQ planting window was, therefore, critical to the future of the local cotton industry because growers needed baseline information to determine how best to take advantage of the higher yield potential offered by the Bt cotton technology, optimise irrigation water use and fibre characteristics. The project’s outputs include a number of key agronomic findings. Over three growing seasons, Bollgard II crop planted in the traditional sowing window from the middle of September to the end of October consistently produced the highest yields. The project delivers a clear and quantitative assessment of the impacts of planting outside the traditional cropping window - a yield penalty of between 1-4 bales/ha for November and December planted cotton. Whilst yield penalties associated with December-planted crops are clearly linked to declining heat units in the second half of the crop and a cool finish, those associated with November-planted cotton are not consistent with the theoretical yield potential for this sowing date. Further research to understand and minimize the physiological constraints on November-planted cotton would give CQ cotton growers far greater flexibility to develop mixed/double/rotation cropping farming systems that are relevant to the rapidly evolving nature of Agricultural production in Australia. The equivalence of cultivar types with clearly distinguishable, genetically based growth habits, demonstrated in this project, gives growers important information for making varietal choices. The entomological outcomes of this project represent strategic and tactical tools that are highly relevant to the viability and profitability of the cotton industry in Australia. The future of the cotton industry is inextricably linked to the survival and efficacy of GM cotton. Research done in the Callide irrigation area demonstrates the unquestionable potential for development of alternative and highly effective resistance management strategies for Bollgard II using novel technologies and strategies based on products such as Magnet®. Magnet® and similar technologies will be increasingly important in strategies to preserve the shelf life and efficacy of current and future generations of GM technology. However, more research will be required to address logistical and operational issues related to these new technologies before they can be fully exploited in commercial production systems. From an economic perspective, SLW is the sleeping giant in terms of insect nemeses of cotton, particularly from the standpoint of climate change and an increasingly warmer production environment. An effective sampling and management strategy for SLW which has been delivered by this project will go a long way towards minimising production costs in an environment characterised by rapidly rising input costs. SLW has the potential to permanently debilitate the national cotton industry by influencing market sentiment and quality perceptions. Field validation of the SLW population sampling models and management options in the Dawson irrigation area cotton and southern Queensland during 2006-07 documents the robustness of the entomological research outcomes achieved through this project.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Discusses: Economic importance of subterranean termites, feeding habits and behaviour, termite baiting concepts, termite aggregation (in ground and aboveground), placing baits, commercial baiting systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Describes the termites found in Queensland, the termite colony, nests, feeding habits and behaviour, natural enemies, distribution and importance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To quantify the impact that planting indigenous trees and shrubs in mixed communities (environmental plantings) have on net sequestration of carbon and other environmental or commercial benefits, precise and non-biased estimates of biomass are required. Because these plantings consist of several species, estimation of their biomass through allometric relationships is a challenging task. We explored methods to accurately estimate biomass through harvesting 3139 trees and shrubs from 22 plantings, and collating similar datasets from earlier studies, in non-arid (>300mm rainfallyear-1) regions of southern and eastern Australia. Site-and-species specific allometric equations were developed, as were three types of generalised, multi-site, allometric equations based on categories of species and growth-habits: (i) species-specific, (ii) genus and growth-habit, and (iii) universal growth-habit irrespective of genus. Biomass was measured at plot level at eight contrasting sites to test the accuracy of prediction of tonnes dry matter of above-ground biomass per hectare using different classes of allometric equations. A finer-scale analysis tested performance of these at an individual-tree level across a wider range of sites. Although the percentage error in prediction could be high at a given site (up to 45%), it was relatively low (<11%) when generalised allometry-predictions of biomass was used to make regional- or estate-level estimates across a range of sites. Precision, and thus accuracy, increased slightly with the level of specificity of allometry. Inclusion of site-specific factors in generic equations increased efficiency of prediction of above-ground biomass by as much as 8%. Site-and-species-specific equations are the most accurate for site-based predictions. Generic allometric equations developed here, particularly the generic species-specific equations, can be confidently applied to provide regional- or estate-level estimates of above-ground biomass and carbon. © 2013 Elsevier B.V.