7 resultados para Graph partitioning
em eResearch Archive - Queensland Department of Agriculture
Resumo:
The freshwater sawfish (Pristis microdon) is a critically endangered elasmobranch. Ontogenetic changes in the habitat use of juvenile P. microdon were studied using acoustic tracking in the Fitzroy River, Western Australia. Habitat partitioning was significant between 0+ (2007 year class) and larger 1+ (2006 year class) P. microdon. Smaller 0+ fish generally occupied shallower water (<0.6 m) compared with 1+ individuals, which mainly occurred in depths >0.6 m. Significant differences in hourly depth use were also revealed. The depth that 1+ P. microdon occupied was significantly influenced by lunar phase with these animals utilising a shallower and narrower depth range during the full moon compared with the new moon. This was not observed in 0+ individuals. Habitat partitioning was likely to be related to predator avoidance, foraging behaviours, and temperature and/or light regimes. The occurrence of 1+ P. microdon in deeper water may also result from a need for greater depths in which to manoeuvre. The present study demonstrates the utility of acoustic telemetry in monitoring P. microdon in a riverine environment. These results demonstrate the need to consider the habitat requirements of different P. microdon cohorts in the strategic planning of natural resources and will aid in the development of management strategies for this species.
Resumo:
Aim: Effective decisions for managing invasive species depend on feedback about the progress of eradication efforts. Panetta & Lawes. developed the eradograph, an intuitive graphical tool that summarizes the temporal trajectories of delimitation and extirpation to support decision-making. We correct and extend the tool, which was affected by incompatibilities in the units used to measure these features that made the axes impossible to interpret biologically. Location: Victoria, New South Wales and Queensland, Australia. Methods: Panetta and Lawes' approach represented delimitation with estimates of the changes in the area known to be infested and extirpation with changes in the mean time since the last detection. We retain the original structure but propose different metrics that improve biological interpretability. We illustrate the methods with a hypothetical example and real examples of invasion and treatment of branched broomrape (Orobanche ramosa L.) and the guava rust complex (Puccinia psidii (Winter 1884)) in Australia. Results: These examples illustrate the potential of the tool to guide decisions about the effectiveness of search and control activities. Main conclusions: The eradograph is a graphical data summary tool that provides insight into the progress of eradication. Our correction and extension of the tool make it easier to interpret and provide managers with better decision support. © 2013 John Wiley & Sons Ltd.
Resumo:
Cyperus iria is a weed of rice with widespread occurrence throughout the world. Because of concerns about excessive and injudicious use of herbicides, cultural weed management approaches that are safe and economical are needed. Developing such approaches will require a better understanding of weed biology and ecology, as well as of weed response to increases in crop density and nutrition. Knowledge of the effects of nitrogen (N) fertilizer on crop-weed competitive interactions could also help in the development of integrated weed management strategies. The present study was conducted in a screenhouse to determine the effects of rice planting density (0, 5, 10, and 20 plants pot−1) and N rate (0, 50, 100, and 150 kg ha−1) on the growth of C. iria. Tiller number per plant decreased by 73–88%, leaf number by 85–94%, leaf area by 85–98%, leaf biomass by 92–99%, and inflorescence biomass by 96–99% when weed plants were grown at 20 rice plants pot−1 (i.e., 400 plants m−2) compared with weed plants grown alone. All of these parameters increased when N rates were increased. On average, weed biomass increased by 118–389% and rice biomass by 121–275% with application of 50–150 kg N ha−1, compared to control. Addition of N favored weed biomass production relative to rice biomass. Increased N rates reduced the root-to-shoot weight ratio of C. iria. Rice interference reduced weed growth and biomass and completely suppressed C. iria when no N was applied at high planting densities (i.e., 20 plants pot−1). The weed showed phenotypic plasticity in response to N application, and the addition of N increased the competitive ability of the weed over rice at densities of 5 and 10 rice plants pot−1 compared with 20 plants pot−1. The results of the present study suggest that high rice density (i.e., 400 plants m−2) can help suppress C. iria growth even at high N rates (150 kg ha−1).
Resumo:
In this study, 120–144 commercial varieties and breeding lines were assessed for grain size attributes including plump grain (>2.8 mm) and retention (>2.5 mm+>2.8 mm). Grain samples were produced from replicated trials at 25 sites across four years. Climatic conditions varied between years as well as between sites. Several of the trial sites were irrigated while the remaining were produced under dryland conditions. A number of the dryland sites suffered severe drought stress. The grain size data was analysed for genetic (G), environmental (E) and genotype by environment (G×E) interactions. All analyses included maturity as a covariate. The genetic effect on grain size was greater than environmental or maturity effects despite some sites suffering terminal moisture stress. The model was used to calculate heritability values for each site used in the study. These values ranged from 89 to 98% for plump grain and 88 to 96% for retention. The results demonstrated that removing the sources of non-heritable variation, such as maturity and field effects, can improve genetic estimates of the retention and plump grain fractions. By partitioning all variance components, and thereby having more robust estimates of genetic differences, plant breeders can have greater confidence in selecting barley genotypes which maintain large, stable grain size across a range of environments.
Resumo:
Ecological and genetic studies of marine turtles generally support the hypothesis of natal homing, but leave open the question of the geographical scale of genetic exchange and the capacity of turtles to shift breeding sites. Here we combine analyses of mitochondrial DNA (mtDNA) variation and recapture data to assess the geographical scale of individual breeding populations and the distribution of such populations through Australasia. We conducted multiscale assessments of mtDNA variation among 714 samples from 27 green turtle rookeries and of adult female dispersal among nesting sites in eastern Australia. Many of these rookeries are on shelves that were flooded by rising sea levels less than 10 000 years (c. 450 generations) ago. Analyses of sequence variation among the mtDNA control region revealed 25 haplotypes, and their frequency distributions indicated 17 genetically distinct breeding stocks (Management Units) consisting either of individual rookeries or groups of rookeries in general that are separated by more than 500 km. The population structure inferred from mtDNA was consistent with the scale of movements observed in long-term mark-recapture studies of east Australian rookeries. Phylogenetic analysis of the haplotypes revealed five clades with significant partitioning of sequence diversity (Φ = 68.4) between Pacific Ocean and Southeast Asian/Indian Ocean rookeries. Isolation by distance was indicated for rookeries separated by up to 2000 km but explained only 12% of the genetic structure. The emerging general picture is one of dynamic population structure influenced by the capacity of females to relocate among proximal breeding sites, although this may be conditional on large population sizes as existed historically across this region.
Resumo:
Quantifying the local crop response to irrigation is important for establishing adequate irrigation management strategies. This study evaluated the effect of irrigation applied with subsurface drip irrigation on field corn (Zea mays L.) evapotranspiration (ETc), yield, water use efficiencies (WUE = yield/ETc, and IWUE = yield/irrigation), and dry matter production in the semiarid climate of west central Nebraska. Eight treatments were imposed with irrigation amounts ranging from 53 to 356 mm in 2005 and from 22 to 226 mm in 2006. A soil water balance approach (based on FAO-56) was used to estimate daily soil water and ETc. Treatments resulted in seasonal ETc of 580-663 mm and 466-656 mm in 2005 and 2006, respectively. Yields among treatments differed by as much as 22% in 2005 and 52% in 2006. In both seasons, irrigation significantly affected yields, which increased with irrigation up to a point where irrigation became excessive. Distinct relationships were obtained each season. Yields increased linearly with seasonal ETc (R 2 = 0.89) and ETc/ETp (R 2 = 0.87) (ETp = ETc with no water stress). The yield response factor (ky), which indicates the relative reduction in yield to relative reduction in ETc, averaged 1.58 over the two seasons. WUE increased non-linearly with seasonal ETc and with yield. WUE was more sensitive to irrigation during the drier 2006 season, compared with 2005. Both seasons, IWUE decreased sharply with irrigation. Irrigation significantly affected dry matter production and partitioning into the different plant components (grain, cob, and stover). On average, the grain accounted for the majority of the above-ground plant dry mass (≈59%), followed by the stover (≈33%) and the cob (≈8%). The dry mass of the plant and that of each plant component tended to increase with seasonal ETc. The good relationships obtained in the study between crop performance indicators and seasonal ETc demonstrate that accurate estimates of ETc on a daily and seasonal basis can be valuable for making tactical in-season irrigation management decisions and for strategic irrigation planning and management.
Resumo:
One of the pathways for transfer of cadmium (Cd) through the food chain is addition of urban wastewater solids (biosolids) to soil, and many countries have restrictions on biosolid use to minimize crop Cd contamination. The basis of these restrictions often lies in laboratory or glasshouse experimentation of soil-plant transfer of Cd, but these studies are confounded by artefacts from growing crops in controlled laboratory conditions. This study examined soil to plant (wheat grain) transfer of Cd under a wide range of field environments under typical agronomic conditions, and compared the solubility and bioavailability of Cd in biosolids to soluble Cd salts. Solubility of biosolid Cd (measured by examining Cd partitioning between soil and soil solution) was found to be equal to or greater than that of soluble Cd salts, possibly due to competing ions added with the biosolids. Conversely, bioavailability of Cd to wheat and transfer to grain was less than that of soluble Cd salts, possibly due to addition of Zn with the biosolids, causing reduced plant uptake or grain loading, or due to complexation of soluble Cd2+ by dissolved organic matter.